Analysis of Heavy Metal in Water used for Irrigation, Soil and Some Vegetables grown around Tin Mine Areas of Heipang District, Barkin-Ladi Local Government of Plateau State

Author(s):  
Agustina Onyebuchi Ijeomah ◽  
Rebecca Ngoholve Vesuwe ◽  
Bitrus Pam

Vegetables growing in mining areas have become a serious food safety concern because of the high levels of heavy metals always associated with mining. In this study, water used for irrigation, soil, cabbage, green pepper and green beans grown in tin mine areas of Heipang District, Barkin-Ladi LGA of Plateau State were analyzed for lead, cadmium and zinc, using Atomic Absorption Spectrophotometer (AAS). The concentrations of the heavy metals in water, soil, vegetables were all in the order Pb, >> Cd > Zn. In the vegetables, the order was: Pb → cabbage > green beans > green pepper; Cd → green beans > cabbage > green pepper; Zn → cabbage > green pepper = green beans. The transfer factors for all the metals (heavy metal in plant / heavy metal in soil) ranged from 0.95 to 1.48. There were high levels of Pb and Cd in all the vegetables, which may be attributed to the metals in the water used for irrigation. Whilst the concentration of Zn in all the samples were lower than recommended limits, the levels of Pb and Cd in the water, soil and vegetables were higher than the WHO/FEPA standard recommended limits reported for vegetables. The Cd concentrations of the vegetables also exceeded the tolerance thresholds for animals and human beings and therefore consumption of vegetable from the area would endanger the health of the population.

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1310
Author(s):  
Matúš Várady ◽  
Sylwester Ślusarczyk ◽  
Jana Boržíkova ◽  
Katarína Hanková ◽  
Michaela Vieriková ◽  
...  

The aim of this study was to determine the effect of roasting on the contents of polyphenols (PPH), acrylamide (AA), and caffeine (CAF) and to analyze heavy metals in specialty coffee beans from Colombia (COL) and Nicaragua (NIC). Samples of NIC were naturally processed and COL was fermented anaerobically. Green beans from COL (COL-GR) and NIC (NIC-GR) were roasted at two levels, light roasting (COL-LIGHT and NIC-LIGHT) and darker roasting (COL-DARK and NIC-DARK), at final temperatures of 210 °C (10 min) and 215 °C (12 min), respectively. Quantitative analyses of PPH identified caffeoylquinic acids (CQA), feruloylquinic acids, and dicaffeoylquinic acids. Isomer 5-CQA was present at the highest levels and reached 60.8 and 57.7% in COL-GR and NIC-GR, 23.4 and 29.3% in COL-LIGHT and NIC-LIGHT, and 18 and 24.2% in COL-DARK and NIC-DARK, respectively, of the total PPH. The total PPH contents were highest in COL-GR (59.76 mg/g dry matter, DM). Roasting affected the contents of PPH, CAF, and AA (p < 0.001, p < 0.011 and p < 0.001, respectively). Nickel and cadmium contents were significantly higher in the COL-GR than in the NIC-GR beans. Darker roasting decreased AA content, but light roasting maintained similar amounts of CAF and total PPH.


2021 ◽  
Author(s):  
Motunrayo Ganiyat Akande

Legumes have high nutritional value and they are important sources of protein, carbohydrates, fats and dietary fiber. The contamination of legumes with pesticides and heavy metals has been reported in scientific literature. Human beings are mainly exposed to the residues of pesticides and heavy metals through the dietary route. The purpose of this review chapter is to highlight the acute and chronic health risks that human beings may be exposed to as a result of the ingestion of legumes polluted with pesticides and heavy metals. Additionally, the mechanisms through which pesticides and heavy metals engender different undesirable health outcomes in human beings were stated. Scientific literature were perused and the information contained in them were collated to derive this chapter. Pesticides cause short-term health effects including hypersensitivity and mortality, while heavy metals induce acute effects like seizures and death. Some chronic untoward effects of pesticides are congenital disabilities and neurological damage. Heavy metals elicit disorders like anemia, hypertension and cancer. It is envisaged that the findings documented in this review will create awareness of the health risks posed by the contamination of legumes with the residues of pesticides and heavy metals so that food safety measures can be enforced globally.


Tehnika ◽  
2020 ◽  
Vol 75 (4) ◽  
pp. 297-304
Author(s):  
Todor Serafimovski ◽  
Goran Tasev ◽  
Trajce Stafilov

The intense mineral extraction in mining areas during the last several decades has produced a large amount of waste material and tailings, which release toxic elements to the environment. The aim of the study was to determine in two vertical profiles/sections (1 and 2) the heavy metal contents of samples derived from six samples, three from each section located in the porphyry copper mine Buchim area, Republic North Macedonia. The results have been compared to new Dutchlist (DL) and Kabata-Pendias (KP) standards and the following was concluded: As values ranged 14.985÷60.131 mg kg-1 with 4 samples above the target value of the DL (29 mg kg-1 As) and 6 above standard values given in KP value (5 mg kg-1 As), in that context Co values ranged 11 ÷57 mg kg-1 with 6 values above the target value of the DL (9 mg kg-1 Co) and 5 above standard values given in KP value (12 mg kg-1 Co), Cr with range 29.32÷75.76 mg kg-1 with 6 over KP value (10 mg kg-1 Cr) and none above the target value of the DL (100 mg kg-1 Cr), Cu with range 2694÷6749 mg kg-1 with 6 samples above the target value of the DL (36 mg kg-1 Cu) and 6 above standard values given in KP value (20 mg kg-1 Cu), Ni with range 59.57÷105.98 mg kg-1 with 6 samples above the target value of the DL (35 mg kg-1 Ni) and 6 above standard values given in KP value (20 mg kg-1 Ni), Pb with range 27.06 ÷96.08 mg kg-1 with 1 sample above the target value of the DL (85 mg kg-1Pb) and 6 above standard values given in KP value (25 mg kg-1Pb), Zn with range 147÷273 mg kg-1 with 6 over target value of the DL (140 mg kg-1 Zn) and 6 above standard KP value (64 mg kg-1 Zn), V with range 34.44÷92.57 mg kg-1 with 5 over target value of the DL (42 mg kg-1 V) and one above KP value (90 mg kg-1 V).In order to compare the level of contamination, the contamination factor (𝐶𝑓 𝑖 ), degree of contamination (Cd), and pollution load index (PLI) were computed. Serious numbers were found for Cu, as, Zn, Co and Ni, which exceeded standard values at almost all samples from both vertical sections. Compared from section 1 and section 2, pollution load index increased by 13.43%, which in almost all samples was classified as heavily polluted to extremely polluted. The fact that mining activities at the Buchim Mine last for almost 40 years, the presence of heavy metals in soils at a serious level is understandable. The high level of contamination is a result of heavy metal persistence and non-biodegradability.


2021 ◽  
pp. 68-81
Author(s):  
A. Feseha ◽  
◽  
A.K. Chaubey ◽  
A. Abraha ◽  
◽  
...  

This study assesses heavy metal levels in the water, soil, and vegetables (swiss chard, lettuce, cabbage, collard green, tomato, green pepper, and carrot) irrigated with wastewater in Gamo, Ethiopia. The samples of soils, waters, and vegetables were randomly collected, processed, and analyzed for heavy metals using atomic absorption spectroscopy. The results obtained show that the mean concentrations of Cd, Cr, and Ni had the highest concentration, and Pb, Zn, and Cu had the lowest concentration in irrigation waters. The levels of Cd in the Kulfo river area and Chamo Lake area and Cu in most of the farm soils were also found to be higher than the guideline values. The study also revealed that the mean levels of Cd in most vegetables and Cr and Pb in some vegetables were higher than the maximum recommended limits set by the World Health Organization / Food and Agriculture Organization 2001. Among the vegetables, cabbage had the highest heavy metal content followed by Swiss-chard, carrot, tomato, collard green, green pepper, and lettuce. The Hazard quotient of Cu, and Ni of all samples of vegetables and Cd in some samples vegetables obtained exceeded unity. It signifies that there are potential health risks to the consumers. This study recommends regular monitoring of heavy metals in soils, waters, and foodstuffs to prevent excessive accrual in the food chain.


Author(s):  
Seyed Esmael Mahdavian ◽  
RK Somashekar

Urban food security in India is a matter of growing concern. It is estimated that by 2005, 60% of India's population will be living in urban areas. The presence of heavy metals in human body always draws scientific concern as these are considered responsible for affecting health, especially in these days where the release of toxic wastes in the environment has been increased. The increasing trends in food contamination in urban areas are largely attributed to the polluted environment in urban agriculture, contaminated food transport and supply chains; poor market sanitary conditions, and the use of contaminated or waste water for irrigation purposes. The objectives of this paper to measure the levels of heavy metal contamination of fruits in Bangalore markets and assess how the heavy metal contamination might have impacted food safety standards vis a vis heavy metals on urban consumers. The results show that urban consumers are at greater risk of purchasing fresh fruits with high levels of heavy metals beyond the legally permissible limits as defined by the Indian Prevention of Food Adulteration Act, 1954. It must be noted here that these norms are less strict than international food safety norms like Codex Alimentarius or European Union standards. It is therefore suggested here that care should be taken in the following: reduce pollution at water source points; improve post harvest handling; enhance better coordination in fresh crops trading system to improve food safety standards; improve sanitary conditions for the city food markets; and increase awareness in consumers and policy makers on the dangers of heavy metal contamination in the food intake. Keywords: Heavy metals; Prevention of Food Adulteration Act; Atomic Absorption Spectrophotometer (AAS) DOI: 10.3126/kuset.v4i1.2880 Kathmandu University Journal of Science, Engineering and Technology Vol.4, No.1, September 2008, pp 17-27


Author(s):  
Chang Li ◽  
Liugen Zheng ◽  
Chunlu Jiang ◽  
Xing Chen ◽  
Shuaishuai Ding

AbstractCoal gangue is the main pollution source of mining areas. When coal gangue is stacked and recycled, the heavy metal elements contained in it are released by natural weathering and leaching, which causes damage to the surrounding ecological environment. In this study, the leaching and precipitation characteristics of heavy metals in low-sulfur coal gangue under different environmental conditions were simulated by indoor dynamic leaching experiments, which provided a theoretical basis for environmental restoration of the mining area. The conclusions are as follows: higher heavy metal content in low-sulfur coal gangue is associated with greater, leaching of heavy metals; acidic conditions promote the release of heavy metals in low-sulfur coal gangue; and more precipitation is associated with better release of heavy metals from the low-sulfur coal gangue.


2019 ◽  
Vol 9 (24) ◽  
pp. 191203 ◽  
Author(s):  
Meena Kapahi ◽  
Sarita Sachdeva

Background. Rapid industrialization and anthropogenic activities such as the unmanaged use of agro-chemicals, fossil fuel burning and dumping of sewage sludge have caused soils and waterways to be severely contaminated with heavy metals. Heavy metals are non-biodegradable and persist in the environment. Hence, remediation is required to avoid heavy metal leaching or mobilization into environmental segments and to facilitate their extraction. Objectives. The present work briefly outlines the environmental occurrence of heavy metals and strategies for using microorganisms for bioremediation processes as reported in the scientific literature. Methods. Databases were searched from different libraries, including Google Scholar, Medline and Scopus. Observations across studies were then compared with the standards for discharge of environmental pollutants. Discussion. Bioremediation employs microorganisms for removing heavy metals. Microorganisms have adopted different mechanisms for bioremediation. These mechanisms are unique in their specific requirements, advantages, and disadvantages, the success of which depends chiefly upon the kind of organisms and the contaminants involved in the process. Conclusions. Heavy metal pollution creates environmental stress for human beings, plants, animals and other organisms. A complete understanding of the process and various alternatives for remediation at different steps is needed to ensure effective and economic processes. Competing interests. The authors declare no competing financial interests.


2017 ◽  
Vol 76 (7) ◽  
pp. 1867-1874 ◽  
Author(s):  
Xu Zhang ◽  
Huanhuan Yang ◽  
Zhaojie Cui

The negative effects of heavy metals have aroused much attention due to their high toxicity to human beings. Migration and transformation trend of heavy metals have a close relationship with soil safety. Researching on migration and transformation of heavy metals in tailings can provide a reliable basis for pollution management and ecosystem restoration. Heavy metal speciation plays an important role in risk assessment. We chose Anshan tailings for our study, including field investigations and laboratory research. Four typical heavy metal elements of mine tailings {Fe (373.89 g/kg), Mn (2,303.80 mg/kg), Pb (40.99 mg/kg) and Cr (199.92 mg/kg)} were studied via Tessier test in vertical and horizontal direction. The main speciation of heavy metals in Anshan tailings was the residual. However, heavy metals have a strong ability for migration and transformation in vertical and horizontal directions. Its tendency to change from stable to unstable speciation results in increasing bioavailability and potential bioavailability. Fe, Mn, Pb and Cr showed different ability in the migration and transformation process (Mn &gt; Pb &gt; Fe &gt; Cr) depending on the characteristics of heavy metals and physicochemical properties of the environment.


2021 ◽  
Vol 7 (1) ◽  
pp. 07-17
Author(s):  
T V Ramchandra ◽  
N R Narayan

Purpose of the study: Heavy metals in food (vegetables, etc.) are harmful to humans due to their non-biodegradable nature, long biological half-lives, and their potential to accumulate in different body parts. Prolonged consumption of such heavy metal contaminated vegetables through foodstuffs may lead to chronic accumulation of heavy metals in human beings' kidneys and liver, disrupting numerous biochemical processes, leading to cardiovascular, neural, kidney and bone diseases. Method: The study on heavy metal concentrations in vegetables grown in the command areas of Varthur lake, Bangalore. The collected vegetable samples were analyzed using ICP-OES (Inductively Coupled Plasma-Optical Emission Spectroscopy) technique to assess the level of heavy metal in acid digested samples. Main Findings: The study has shown a significant accumulation of heavy metals in vegetables that correlated well with its concentrations in soil and lake water. The prolonged irrigation of vegetables using contaminated lake water has led to soil contamination, which ultimately resulted in contamination of vegetables due to the uptake and accumulation of heavy metals in edible portions of vegetables. Application of the Study: Urgent attention is needed to devise and implement appropriate means of regular monitoring of the toxic heavy metals from domestic sewage and industrial effluent and provide proper advice and support for the safe and productive use of wastewater for irrigation purposes to prevent excessive buildup of heavy metals in the food chain.


2020 ◽  
Author(s):  
Narjala Rama Jyothi

Heavy metals are defined in many ways, based on various factors such as density and atomic weight. Some of the heavy metals are essential as nutrients for humans such as iron, cobalt and, zinc in small quantities but are toxic in higher quantities. But few metals, such as lead, cadmium and, mercury are poisonous even in small quantities. The toxicity of heavy metals is depending on concentration,period of exposure and route of exposure. Heavy metal exposure takes place on human beings through inhalation from the atmosphere, intake through drinking water and, ingestion through the skin by dermal contact. The present chapter describes the definition of heavy metals, sources of these heavy metals, toxicity and, their impact on various environmental segments, such as air, water and, soil.


Sign in / Sign up

Export Citation Format

Share Document