Kinetic modeling of Cu2+, Cd2+ and Pb2+ ions adsorption onto raw and modified Artocarpus heterophyllus L. seeds from a model solution

Author(s):  
Samuel Ng’ang’a Ndung’u ◽  
Esther Wanja Nthiga ◽  
Ruth Nduta Wanjau ◽  
James Ndiritu

Heavy metals contaminated water has detrimental health effects to human beings and animals not limited to hypertension, kidney damage, cancer and eventual death. Available water treatment methods have proved to not only function at high operation costs and ineffective but also yielded insignificant results to a local ordinary Kenyan citizens. The present study investigates the use of Jackfruit seeds wastes as a low cost adsorbent in adsorption water treatment technique. Raw and modified Jackfruit seeds adsorbent were applied to study kinetic studies of Cu2+, Cd2+ and Pb2+ ions adsorption from an aqueous solution under batch conditions. The adsorption behavior of the three metal ions onto raw and modified adsorbents was monitored spectrophotometrically and analysed with Pseudo-first-order and Pseudo-second-order kinetic models. Correlation coefficients (R2) confirmed that all experimental data fitted Pseudo-second-order with R2 > 0.984 which implied a chemisorption process. Experimental and calculated adsorption capacities was higher for modified adsorbent with Pb2+ ions registering higher values. The rate constants (k2) was higher in modified adsorbent than in raw adsorbent with Pb2+ ions registering highest value of rate of 4.54×10-1 (mg g-1min-1). Adsorption capacities was in the order of Pb2+ > Cu2+ > Cd2+. The results showed viability of the adsorbents for the removal of the heavy metals from waste solution in an economical and environmental friendly manner.

2010 ◽  
Vol 113-116 ◽  
pp. 632-638
Author(s):  
Feng Yu Li ◽  
Xiao Mei Sun ◽  
Bu Hai Li

Batch adsorption experiments were carried out to remove heavy metals Cu(II)and Ni(II) by pyromellitic dianhydride (PMDA) grafted β-Cyclodextrin (β-CD). The effects concerning the pH of the solution, contact time and initial heavy metal concentration were studied and discussed. The adsorption values increased significantly after a large number of carboxyl groups were gragfted on the microspheres surface. In order to investigate the mechanism of sorption, adsorption data were modeled using the pseudo-first-order and pseudo-second-order kinetic equation. It was found that kinetic studies showed good correlation coefficients for a pseudo-second-order kinetic model, confirming that the sorption rate was controlled by chemical adsorption. The equilibrium process was better described by the Langmuir isotherm than the Freundlich isotherm. XPS analysis further confirmed that the carboxyl group which grafted on the surface of the β-CD microspheres play a very important role in the removal of heavy metals.


Author(s):  
Buhari Magaji ◽  
Aisha U. Maigari ◽  
Usman A. Abubakar ◽  
Mukhtar M. Sani ◽  
Amina U. Maigari

This study was aimed at using Balanite aegyptiaca seed coats activated carbon (BAAC) as a potential adsorbent to remove safranin dye from aqueous solution. BAAC was prepared from Balanite aegyptiaca seed coats using a one-step procedure with 67.27% yield, 3.23% ash content, 695 m2/g surface area and 203 mg/g iodine number. The FTIR spectroscopy revealed O-H, N-H, C-H, C=C, C-O-H stretching vibrations. The influences of agitation time, initial dye concentration and adsorbent dose were studied in batch experiments at room temperature. The adsorptions were rapid at the first 15 minutes of agitation, with the uptake of 2.746 mg/kg. The adsorption equilibrium was achieved at 90 minutes of agitation. Kinetic studies showed good correlation coefficient for both pseudo-first order and pseudo-second-order kinetics model but fitted well into pseudo-second order kinetic model. The adsorption data fitted well into Langmuir isotherm with correlation coefficient (R2) very close to unity and Langmuir maximum adsorption constant, qm  1.00. Thus, the fitting into Langmuir indicates monolayer coverage on the adsorbents. The results showed that BAAC has the potential to be applied as alternative low-cost adsorbents in the remediation of dye contamination in wastewater.


Author(s):  
Mohamed Nasser Sahmoune ◽  
Krim Louhab ◽  
Aissa Boukhiar

Dead streptomyces rimosus was found to be an effective biosorbent for the removal of chromium from industrial tanning effluents. A sorption level of 65 mg/g was observed at pH 4.8 while the precipitation effect augmented this value at a higher pH range. Chromium desorption increased with decreasing desorption agents pH (including HCl and H2SO4) to a maximum value of 95% at approximately zero pH. The biosorption data of trivalent chromium by streptomyces rimosus has been used for kinetic studies based on fractional power, Elovich, pseudo-first order and pseudo-second order rate expressions. The time-dependent Cr (III) biosorption data were well-described by a pseudo-second-order kinetic model. The intraparticle diffusion is not the rate-limiting step for the whole reaction. It was found that the biosorption equilibrium data fit well with the Langmuir model.


2019 ◽  
Vol 233 (9) ◽  
pp. 1275-1292 ◽  
Author(s):  
Atta ul Haq ◽  
Muhammad Rasul Jan ◽  
Jasmin Shah ◽  
Maria Sadia ◽  
Muhammad Saeed

Abstract The presence of heavy metals in water causes serious problems and their treatment before incorporating into the water body is a challenge for researchers. The present study was conducted to compare the sorption study of Ni (II) using silica gel, amberlite IR-120 and sawdust of mulberry wood in batch system under the influence of pH, initial Ni (II) concentration and contact time. It was observed that sorption process was depending upon pH and maximum sorption was achieved at pH 7.0. Kinetic data were well fitted into pseudo-second order kinetic model due to high R2 values and closeness of experimental sorption capacity and calculated sorption capacity of pseudo-second order. Isotherms study showed that Langmuir is one of the most suitable choices to explain sorption data due to high R2 values. The monolayer sorption capacities of silica gel, amberlite IR-120 and sawdust were found to be 33.33, 25.19, and 33.67 mg g−1, respectively. Desorption study revealed that NaCl is one of the most appropriate desorbent. It may be concluded from this study that sawdust is a suitable sorbent due to low cost, abundant availability and recycling of the materials for further study.


2010 ◽  
Vol 171-172 ◽  
pp. 41-44
Author(s):  
Xiao Cun Xiao ◽  
Gai Xia Fang ◽  
Er Li Zhao ◽  
Lv Bin Zhai ◽  
Jun Shuai Shi

The objective of this study is to assess the environmentaly friendly Ni(II) adsorption from synthetic wastewater using Pseudomonas alcaligenes biomass (PA-2). The ability of PA-2 to remove the Ni(II) ions was investigated by using batch biosorption procedure. The effects such as pH, dosage of biosorbent, Ni(II) initial concentration and sorbate–sorbent contact time and agitating speed on the adsorption capacities of PA-2 were studied. Biosorption equilibriums were rapidly established in about 60 min and the adsorption kinetics followed the pseudo-second order kinetic model. The maximum Ni(II) adsorption capacity determined from Langmuir isotherm were 82.23 mg/g PA-2 at pH 5.0, at 25±2°C and shaker speed 150 rpm, respectively. The carboxyl , hydroxyl and amino groups of the PA-2 were involved in chemical interaction with the Ni(II) ions depicted by Fourier transform infrared spectroscopic (FTIR) results. The study points to the potential of new use of Pseudomonas alcaligenes biomass as an effective biosorbent for the removal of Ni(II) and from environmental and industrial wastewater.


Author(s):  
Jurgita Seniūnaitė ◽  
Rasa Vaiškūnaitė ◽  
Kristina Bazienė

Research studies on the adsorption kinetics are conducted in order to determine the absorption time of heavy metals on coffee grounds from liquid. The models of adsorption kinetics and adsorption diffusion are based on mathe-matical models (Cho et al. 2005). The adsorption kinetics can provide information on the mechanisms occurring be-tween adsorbates and adsorbents and give an understanding of the adsorption process. In the mathematical modelling of processes, Lagergren’s pseudo-first- and pseudo-second-order kinetics and the intra-particle diffusion models are usually applied. The mathematical modelling has shown that the kinetics of the adsorption process of heavy metals (copper (Cu) and lead (Pb)) is more appropriately described by the Lagergren’s pseudo-second-order kinetic model. The kinetic constants (k2Cu = 0.117; k2Pb = 0,037 min−1) and the sorption process speed (k2qeCu = 0.0058–0.4975; k2qePb = 0.021–0.1661 mg/g per min) were calculated. After completing the mathematical modelling it was calculated that the Langmuir isotherm better reflects the sorption processes of copper (Cu) (R2 = 0.950), whilst the Freundlich isotherm – the sorption processes of lead (Pb) (R2 = 0.925). The difference between the mathematically modelled and experimen-tally obtained sorption capacities for removal of heavy metals on coffee grounds from aqueous solutions is 0.059–0.164 mg/l for copper and 0.004–0.285 mg/l for lead. Residual concentrations of metals in a solution showed difference of 1.01 and 0.96 mg/l, respectively.


2017 ◽  
Vol 12 (2) ◽  
pp. 305-313 ◽  
Author(s):  
N. Rajamohan ◽  
M. Rajasimman

This experimental research was an investigation into removal of mercury by using a strong acid cation resin, 001 × 7. Parametric experiments were conducted to determine the optimum pH, resin dosage, agitation speed and the effect of change in concentration in the range of 50–200 mg/L. High resin dosages favoured better removal efficiency but resulted in lower uptakes. Equilibrium experiments were performed and fitted to Langmuir and Freundlich isotherm models. Langmuir model suited well to this study confirming the homogeneity of the resin surface. The Langmuir constants were estimated as qmax = 110.619 mg/g and KL = 0.070 L/g at 308 K. Kinetic experiments were modeled using Pseudo second order model and higher values of R2 (>0.97) were obtained. The Pseudo second order kinetic constants, namely, equilibrium uptake (qe) and rate constant (k2), were evaluated as 59.17 mg/g and 40.2 × 10−4 g mg−1 min−1 at an initial mercury concentration of 100 mg/L and temperature of 308 K.


2013 ◽  
Vol 67 (4) ◽  
pp. 737-744 ◽  
Author(s):  
J. X. Zhang ◽  
L. L. Ou

The adsorption of crystal violet dye from aqueous solutions onto an activated carbon prepared from peanut shells was analyzed in this study. The effects of particle size, initial concentration, time and temperature on crystal violet removal were studied in batch experiments. Experimental results showed that the adsorption equilibrium was achieved within 100 min for all studied concentrations. Analysis of adsorption results showed that the adsorption isotherms could be well fitted to the Langmuir model. Kinetic parameters, rate constants, equilibrium adsorption capacities and related correlation coefficients for pseudo first-order and second-order kinetic models were calculated and discussed. The results revealed that the adsorption kinetics was in good agreement with the pseudo second-order equation. Thermodynamic parameters such as the change of Gibbs free energy (ΔG°), change of enthalpy (ΔH°) and change of entropy (ΔS°) have also been determined and it has been found that the adsorption process should be spontaneous, endothermic and physisorption in nature.


2016 ◽  
Vol 74 (7) ◽  
pp. 1644-1657 ◽  
Author(s):  
Mona El-Sayed ◽  
Gh. Eshaq ◽  
A. E. ElMetwally

In our study, Mg–Al–Zn mingled oxides were prepared by the co-precipitation method. The structure, composition, morphology and thermal stability of the synthesized Mg–Al–Zn mingled oxides were analyzed by powder X-ray diffraction, Fourier transform infrared spectrometry, N2 physisorption, scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Batch experiments were performed to study the adsorption behavior of cobalt(II) and nickel(II) as a function of pH, contact time, initial metal ion concentration, and adsorbent dose. The maximum adsorption capacity of Mg–Al–Zn mingled oxides for cobalt and nickel metal ions was 116.7 mg g−1, and 70.4 mg g−1, respectively. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models in linear and nonlinear regression analysis. The kinetic studies showed that the adsorption process could be described by the pseudo-second-order kinetic model. Experimental equilibrium data were well represented by Langmuir and Freundlich isotherm models. Also, the maximum monolayer capacity, qmax, obtained was 113.8 mg g−1, and 79.4 mg g−1 for Co(II), and Ni(II), respectively. Our results showed that Mg–Al–Zn mingled oxides can be used as an efficient adsorbent material for removal of heavy metals from industrial wastewater samples.


2012 ◽  
Vol 65 (10) ◽  
pp. 1729-1737 ◽  
Author(s):  
Messaouda Safa ◽  
Mohammed Larouci ◽  
Boumediene Meddah ◽  
Pierre Valemens

The adsorption of Cu2+, Zn2+, Cd2+ and Pb2+ ions from aqueous solution by Algerian raw diatomite was studied. The influences of different sorption parameters such as contact pH solution, contact time and initial metal ions concentration were studied to optimize the reaction conditions. The metals ions adsorption was strictly pH dependent. The maximum adsorption capacities towards Cu2+, Zn2+, Cd2+ and Pb2+ were 0.319, 0.311, 0.18 and 0.096 mmol g−1, respectively. The kinetic data were modelled using the pseudo-first-order and pseudo-second-order kinetic equations. Among the kinetic models studied, the pseudo-second-order equation was the best applicable model to describe the sorption process. Equilibrium isotherm data were analysed using the Langmuir and the Freundlich isotherms; the results showed that the adsorption equilibrium was well described by both model isotherms. The negative value of free energy change ΔG indicates feasible and spontaneous adsorption of four metal ions on raw diatomite. According to these results, the high exchange capacities of different metal ions at high and low concentration levels, and given the low cost of the investigated adsorbent in this work, Algerian diatomite was considered to be an excellent adsorbent.


Sign in / Sign up

Export Citation Format

Share Document