Equilibrium and Kinetic Studies for the Biosorption of Aqueous Nickel(II) Ions onto the Pseudomonas alcaligenes Biomass

2010 ◽  
Vol 171-172 ◽  
pp. 41-44
Author(s):  
Xiao Cun Xiao ◽  
Gai Xia Fang ◽  
Er Li Zhao ◽  
Lv Bin Zhai ◽  
Jun Shuai Shi

The objective of this study is to assess the environmentaly friendly Ni(II) adsorption from synthetic wastewater using Pseudomonas alcaligenes biomass (PA-2). The ability of PA-2 to remove the Ni(II) ions was investigated by using batch biosorption procedure. The effects such as pH, dosage of biosorbent, Ni(II) initial concentration and sorbate–sorbent contact time and agitating speed on the adsorption capacities of PA-2 were studied. Biosorption equilibriums were rapidly established in about 60 min and the adsorption kinetics followed the pseudo-second order kinetic model. The maximum Ni(II) adsorption capacity determined from Langmuir isotherm were 82.23 mg/g PA-2 at pH 5.0, at 25±2°C and shaker speed 150 rpm, respectively. The carboxyl , hydroxyl and amino groups of the PA-2 were involved in chemical interaction with the Ni(II) ions depicted by Fourier transform infrared spectroscopic (FTIR) results. The study points to the potential of new use of Pseudomonas alcaligenes biomass as an effective biosorbent for the removal of Ni(II) and from environmental and industrial wastewater.

2010 ◽  
Vol 171-172 ◽  
pp. 11-14
Author(s):  
Ling Xian Luo ◽  
Tai Zhi Zhang ◽  
Lv Bao Tong

The objective of this study is to assess the potential applicability of an extracellular biopolymer (PA-2) produced by Pseudomonas alcaligenes as biosorbent remove the Cu(II) ions from environmental and industrial wastewater. The effects such as pH, Cu(II) initial concentration and sorbate-sorbent contact time and agitating speed on the adsorption capacities of PA-2 were studied. Biosorption equilibriums were rapidly established in about 60 min and the adsorption kinetics followed the pseudo-second order kinetic model. Biosorption equilibrium datas were better described by Langmuir isotherm model. The maximum Cu(II) adsorption capacity determined from Langmuir isotherm were 81.36 mg /g PA-2. The carboxyl and hydroxyl groups of the PA-2 were involved in chemical interaction with the Cu(II) ions depicted by Fourier transform infrared spectroscopic (FTIR) results. The present study indicated that PA-2 may be used as an inexpensive, effective and easily cultivable biosorbent for the removal of Cu(II) ions from environmental and industrial wastewater.


2010 ◽  
Vol 171-172 ◽  
pp. 15-18
Author(s):  
Zeng Quan Ji ◽  
Tian Hai Wang ◽  
Kai Hong Luo ◽  
Yao Qing Wang

An extracellular biopolymer (PFC02) produced by Pseudomonas alcaligenes was used as an alternative biosorbent to remove toxic Cd(II) metallic ions from aqueous solutions. The effect of experimental parameters such as pH, Cd(II) initial concentration and contact time on the adsorption was studied. It was found that pH played a major role in the adsorption process, the optimum pH for the removal of Cd(II) was 6.0. The FTIR spectra showed carboxyl, hydroxyl and amino groups of the PFC02 were involved in chemical interaction with the Cd(II) ions. Equilibrium studies showed that Cd(II) adsorption data followed Langmuir model. The maximum adsorption capacity (qmax) for Cd(II) ions was estimated to be 93.55 mg/g. The kinetic studies showed that the kinetic rates were best fitted to the pseudo-second-order model. The study suggestted that the novel extracellular biopolymer biosorbent have potential applications for removing Cd(II) from wastewater.


Author(s):  
Mohamed Nasser Sahmoune ◽  
Krim Louhab ◽  
Aissa Boukhiar

Dead streptomyces rimosus was found to be an effective biosorbent for the removal of chromium from industrial tanning effluents. A sorption level of 65 mg/g was observed at pH 4.8 while the precipitation effect augmented this value at a higher pH range. Chromium desorption increased with decreasing desorption agents pH (including HCl and H2SO4) to a maximum value of 95% at approximately zero pH. The biosorption data of trivalent chromium by streptomyces rimosus has been used for kinetic studies based on fractional power, Elovich, pseudo-first order and pseudo-second order rate expressions. The time-dependent Cr (III) biosorption data were well-described by a pseudo-second-order kinetic model. The intraparticle diffusion is not the rate-limiting step for the whole reaction. It was found that the biosorption equilibrium data fit well with the Langmuir model.


2020 ◽  
Vol 82 (10) ◽  
pp. 2159-2167
Author(s):  
Ru-yi Zhou ◽  
Jun-xia Yu ◽  
Ru-an Chi

Abstract Double functional groups modified bagasse (DFMBs), a series of new zwitterionic groups of carboxyl and amine modified adsorbents, were prepared through grafting tetraethylenepentamine (TEPA) onto the pyromellitic dianhydride (PMDA) modified bagasse using the DCC/DMAP method. DFMBs' ability to simultaneously remove basic magenta (BM, cationic dye) and Congo red (CR, anionic dye) from aqueous solution in single and binary dye systems was investigated. FTIR spectra and Zeta potential analysis results showed that PMDA and TEPA were successfully grafted onto the surface of bagasse, and the ratio of the amount of carboxyl groups and amine groups was controlled by the addition of a dosage of TEPA. Adsorption results showed that adsorption capacities of DFMBs for BM decreased while that for CR increased with the increase of the amount of TEPA in both single and binary dye systems, and BM or CR was absorbed on the modified biosorbents was mainly through electrostatic attraction and hydrogen bond. The adsorption for BM and CR could reach equilibrium within 300 min, both processes were fitted well by the pseudo-second-order kinetic model. The cationic and anionic dyes removal experiment in the binary system showed that DMFBs could be chosen as adsorbents to treat wastewater containing different ratios of cationic and anionic dyes.


2020 ◽  
Vol 10 (9) ◽  
Author(s):  
G. B. Adebayo ◽  
H. I. Adegoke ◽  
Sidiq Fauzeeyat

Abstract Hexavalent chromium was adsorbed from aqueous solution with three prepared and characterized adsorbents, namely goethite (G), activated carbon (AC) and their composite (GAC). The goethite particle was synthesized using the precipitation methods, and activated carbon was prepared from the stem bark of Daniellia oliveri tree and composite in a ratio of 1:5 goethite–activated carbon. The adsorption capacities of G, AC and GAC for Cr(VI) are 6.627, 5.455 and 6.354 mg/g with 0.02 g adsorbent within contact time of 60, 180 and 30 min for G, AC and GAC, respectively, for Cr(VI) adsorption at optimum pH of 3. The isotherm studied was best explained by Langmuir adsorption isotherm and fitted with the pseudo-second-order kinetic model. Desorption studies showed that 1.0 M HNO3 was a better desorbing agent than 0.1 M HNO3, 0.1 M HCl and 1.0 M HCl. Chromium was most desorbed (94.60% in Cr//G using 1 M HNO3). The result obtained revealed that goethite and activated carbon produced are favourable adsorbents and the composite of the two adsorbents gives a more favourable, economical and affordable adsorbent for the clean-up of heavy metal contamination.


2020 ◽  
Vol 81 (6) ◽  
pp. 1114-1129 ◽  
Author(s):  
Jun Wang ◽  
Qinglong Xie ◽  
Ao Li ◽  
Xuejun Liu ◽  
Fengwen Yu ◽  
...  

Abstract In this study, an efficient route to synthesizing polyethyleneimine-modified ultrasonic-assisted acid hydrochar (PEI-USAH) is developed and reported. Ultrasonic irradiation technique was used as surface modification method to shorten the crosslinking reaction for hydrochar and polyethyleneimine (PEI). The PEI-USAH showed an excellent adsorption capacity for Cr(VI) from aqueous solution. The physicochemical properties of this PEI-modified adsorbent were comparatively characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller analysis and CNHS analysis. The effects of contact time, initial pH, and biosorbent dose on adsorption capacities were investigated. The batch adsorption experiments showed that PEI-USAH possessed the maximum adsorption capacities of 94.38 mg/g and 330.84 mg/g for initial Cr(VI) concentration of 100 mg/L and 500 mg/L, respectively. Furthermore, this adsorption process could be fitted to Langmuir adsorption and described by the pseudo second order kinetic model. Based on the above findings, PEI-USAH could be used as a potential adsorbent for removal of Cr(VI) from wastewater.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Qianlan Wu ◽  
Yang Xian ◽  
Zilin He ◽  
Qi Zhang ◽  
Jun Wu ◽  
...  

Abstract As a multifunctional material, biochar is considered a potential adsorbent for removing heavy metals from wastewater. Most biochars with high adsorption capacities have been modified, but this modification is uneconomical, and modifying biochar may cause secondary pollution. Thus, it is necessary to develop an efficient biochar without modification. In this study, spent P. ostreatus substrate and spent shiitake substrate were used as the raw materials to prepare biochar. Then, the physicochemical properties of the biochars and their removal efficiencies for Pb(II) were investigated. The results showed that the physicochemical properties (e.g., large BET surface area, small pore structure and abundant functional groups) contributed to the large adsorption capacity for Pb(II); the maximum adsorption capacities were 326 mg g−1 (spent P. ostreatus substrate-derived biochar) and 398 mg g−1 (spent shiitake substrate-derived biochar), which are 1.6–10 times larger than those of other modified biochars. The Pb(II) adsorption data could be well described by the pseudo-second-order kinetic model and the Langmuir model. This study provides a new method to comprehensively utilize spent mushroom substrates for the sustainable development of the edible mushroom industry.


2020 ◽  
Vol 10 (21) ◽  
pp. 7450
Author(s):  
Ali Q. Alorabi ◽  
Fahad A. Alharthi ◽  
Mohamed Azizi ◽  
Nabil Al-Zaqri ◽  
Adel El-Marghany ◽  
...  

In this work, the widely-abundant, cheap, wild plant Lavandula pubescens Decne was evaluated as an adsorbent for removing Pb(II) ions from wastewater. The chemical composition of the plant was partially isolated and characterized by the corresponding techniques, including gas chromatography–mass spectrometry, gas liquid chromatography, and FTIR spectroscopy. The adsorption capacity of the dried plant material for Pb(II) ions increased with increasing contact time, initial ion concentration, and temperature, while it decreased with increasing adsorbent dosage. The optimum condition for Pb(II) adsorption was determined as 550 mg/L initial metal concentration, pH ≤ 7, and 90 min of contact. The best fit for Pb(II) adsorption isotherms was the linear form of the Freundlich model; however, the maximum capacity indicated by Langmuir was 91.32 mg/g. The experimental data fit better the pseudo-second-order kinetic model (R2 = 0.969), suggesting chemisorption process. Thermodynamic data revealed an endothermic, nonspontaneous, and adsorption process favored at higher concentrations.


2019 ◽  
Vol 80 (2) ◽  
pp. 329-338
Author(s):  
Xuan Wang ◽  
Yande Jing ◽  
Yongqiang Cao ◽  
Shuo Xu ◽  
Lidong Chen

Abstract In this study, biochar was prepared from Alternanthera philoxeroides (AP) under O2-limited condition at 350 °C (LB) and 650 °C (HB) and treated with aging by HNO3/H2SO4 oxidation. Structural changes of the biochar after aging treatment and the treatment's effect on Pb(II) absorption were explored. The results showed that oxygen-containing functional groups, aromatic structure and surface area of the biochar increased after the aging treatment. However, the integrity of the tubular structure was broken into fragments. The adsorption process of Pb(II) was in accordance with the pseudo-second-order kinetic model and fitted by the Langmuir model. With the increase of pH, the adsorption capacities of Pb(II) increased gradually, and the adsorption effect was best at pH 5. The aged HB presented a decrease of the carboxyl group, which caused less adsorption capacity of Pb(II) than that of aged LB. The maximum adsorption capacities of Pb(II) on fresh biochar at 350 °C and 650 °C were 279.85 and 286.07 mg·g−1 and on aged biochar were 242.57 and 159.82 mg·g−1, respectively. The adsorption capacity of HB for Pb(II) was higher than that of LB, and the adsorption capacity of aged biochar for Pb(II) decreased obviously, which might be attributable to changes in physicochemical properties of biochar after the aging treatment.


2020 ◽  
Vol 32 (3) ◽  
pp. 508-514
Author(s):  
Vinay Kumar Chintalapudi ◽  
Ramya Krishna S.L. Kanamarlapudi ◽  
Useni Reddy Mallu ◽  
Sudhamani Muddada

In the present study, initially Aspergillus niger was tested for biosorption of Pb(II) ions and then studied the effect of pretreatment for enhanced biosorption. It was found that the maximum biosorption potential was achieved with citric acid treatment (70.56 %) in comparison with the biomass without treatment (65.46 %) at a biosorbent dose of 20 mg/L, pH 4, 100 rpm, 37 ºC for 8 h. The optimized conditions for treated Aspergillus niger were determined by optimizing the biosorption parameters such as pH, temperature, biomass dose, incubation time and agitation speed. This study indicates that the citric acid treated Aspergillus niger is an effective biosorbent for removal of lead (II) at optimized conditions with the maximum biosorption potential of 83.6 % as compared to previous reported work. SEM-EDX and FTIR analysis showed the structural variations and the functional groups involved in lead biosorption, respectively. Biosorption kinetics showed that pseudo second order kinetic model as the better fit.


Sign in / Sign up

Export Citation Format

Share Document