Enhancing Soil Fertility through Intercropping, Inoculation and Fertilizer

2016 ◽  
Vol 59 (1) ◽  
pp. 1-5
Author(s):  
Muhammad Arshad Ullah ◽  
Nazir Hussain ◽  
Helge Schmeisky ◽  
Muhammad Rasheed

The present study was conducted to investigate the effects of intercropping grass (Panicummaximum) and legumes (Vicia sativa and cowpeas) alone or coupled with inoculation or fertilizer on soilfertility. The study comprised of two field experiments conducted under rain fed conditions for two years(June, 2005 to September, 2007) at National Agriculture Research Centre, Islamabad, Pakistan. In oneexperiment intercropping (33, 50 and 67%) of grass and legumes alone as well as coupled with seedinoculation were studied while, same set of treatments was combined with fertilizer application at the ratesof 25, 75 and 50 kg/ha (N, P2O5 and K2O) in the second experiment. Total soil N increased by 0.008% dueto symbiotic fixation in addition to plant uptake under best treatment when compared with grass alonewhile, soil organic matter increased by 0.19%. After crop harvest soil N content was determined to behigher in all the treatments of the experiment compared with growing grass alone. Legumes caused rhizobialN fixation that caused an increase in soil N. Similarly, intercropping and inoculation increased this soilcharacteristic that was found to be non-significant in the first crop but later on became significant, especiallywhen intercropping of grass with legumes after seed inoculation was investigated or fertilizer wassupplemented to the crops. Thus, not only grass used the symbiotically fixed N by companion legumesbut also enhanced the soil N content. The effect of fertilizer was not measurable statistically in case of soilorganic matter. This parameter, in general, was not affected significantly when assessed after first cropharvest. Nevertheless, legumes alone or intercropped within grass increased this important soil constituent.Inoculation proved further beneficial in this regard but combination of intercropping (especially 67%)either with seed inoculation or application of fertilizer was found as the best technique for increasing soilorganic matter.

Soil Research ◽  
1984 ◽  
Vol 22 (2) ◽  
pp. 181 ◽  
Author(s):  
DR Scotter ◽  
IH Mohammed ◽  
PEH Gregg

A simple model describing the transformations, leaching and plant uptake of the nitrogen (N) in urea fertilizer applied to a barley crop is presented. The model considers the root zone as a single compartment and uses daily time steps, and so can be run on a small programmable calculator. It consists of separate submodels for water, fertilizer N and native soil N. Data from a field experiment described in a companion paper were used for parameterization, and the model was then tested on another data set from that experiment. The model successfully predicted the effect, on the leaching and plant uptake of fertilizer N, of a large increase in rainfall plus irrigation from 103 mm to 186 mm in the 35 days following sowing and urea application. As an example of the model's utility, it is used to predict that if 30 mm of drainage occurred within 24 h of fertilizer application, about 33% of the fertilizer N would be leached from the root zone in the silt loam soil studied. However, the same amount of drainage occurring a week after fertilizer application would result only in about 8% of the fertilizer N being leached. The complementary roles that process-oriented field experiments and simple mechanistic models can play in soil fertility research are discussed.


1996 ◽  
Vol 127 (3) ◽  
pp. 347-363 ◽  
Author(s):  
M. J. Glendining ◽  
D. S. Powlson ◽  
P. R. Poulton ◽  
N. J. Bradbury ◽  
D. Palazzo ◽  
...  

SUMMARYThe Broadbalk Wheat Experiment at Rothamsted (UK) includes plots given the same annual applications of inorganic nitrogen (N) fertilizer each year since 1852 (48, 96 and 144 kg N/ha, termed N1 N2 and N3 respectively). These very long-term N treatments have increased total soil N content, relative to the plot never receiving fertilizer N (N0), due to the greater return of organic N to the soil in roots, root exudates, stubble, etc (the straw is not incorporated). The application of 144 kg N/ha for 135 years has increased total soil N content by 21%, or 570 kg/ha (0–23 cm). Other plots given smaller applications of N for the same time show smaller increases; these differences were established within 30 years. Increases in total soil N content have been detected after 20 years in the plot given 192 kg N/ha since 1968 (N4).There was a proportionally greater increase in N mineralization. Crop uptake of mineralized N was typically 12–30 kg N/ha greater from the N3 and N4 treatments than the uptake of c. 30 kg N/ha from the N0 treatment. Results from laboratory incubations show the importance of recently added residues (roots, stubble, etc) on N mineralization. In short-term (2–3 week) incubations, with soil sampled at harvest, N mineralization was up to 60% greater from the N3 treatment than from N0. In long-term incubations, or in soil without recently added residues, differences between long-term fertilizer treatments were much less marked. Inputs of organic N to the soil from weeds (principally Equisetum arvense L.) to the N0–N2 plots over the last few years may have partially obscured any underlying differences in mineralization.The long-term fertilizer treatments appeared to have had no effect on soil microbial biomass N or carbon (C) content, but have increased the specific mineralization rate of the biomass (defined as N mineralized per unit of biomass).Greater N mineralization will also increase losses of N from the system, via leaching and gaseous emissions. In December 1988 the N3 and N4 plots contained respectively 14 and 23 kg/ha more inorganic N in the profile (0–100 cm) than the N0 plot, due to greater N mineralization. These small differences are important as it only requires 23 kg N/ha to be leached from Broadbalk to increase the nitrate concentration of percolating water above the 1980 EC Drinking Water Quality Directive limit of 11·3mgN/l.The use of fertilizer N has increased N mineralization due to the build-up of soil organic N. In addition, much of the organic N in Broadbalk topsoil is now derived from fertilizer N. A computer model of N mineralization on Broadbalk estimated that after applying 144 kg N/ha for 140 years, up to half of the N mineralized each year was originally derived from fertilizer N.In the short-term, the amount of fertilizer N applied usually has little direct effect on losses of N over winter. In most years little fertilizer-derived N remains in Broadbalk soil in inorganic form at harvest from applications of up to 192 kg N/ha. However, in two very dry years (1989 and 1990) large inorganic N residues remained at harvest where 144 and 192 kg N/ha had been applied, even though the crop continued to respond to fertilizer N, up to at least 240 kg N/ha.


1981 ◽  
Vol 17 (3) ◽  
pp. 311-315 ◽  
Author(s):  
R. L. Yadav

SUMMARYField experiments were conducted for 3 years covering 4 crop seasons at Lucknow to study the utility of pigeonpea (Cajanus cajan) as an intercrop in economizing N for maize (Zea mays) and to assess the residual fertility of kharif crops on autumn-planted sugarcane (Saccharum officinarum). Pigeonpea increased the soil N content due to substantial nodulation, but as an intercrop it did not increase the yield of maize at any level of nitrogen. Sugarcane grown after pigeonpea yielded 43% more than when grown after maize. Intercropping pigeonpea in maize would be more beneficial than growing a pure crop of maize before planting sugarcane.


2019 ◽  
Vol 24 ◽  
pp. 98-103
Author(s):  
V. V. Illienko ◽  
O.Y. Pareniuk ◽  
K.E. Shavanova ◽  
N. G. Nesterova ◽  
Y. V. Ruban ◽  
...  

Aim. Main goal is to determine the role of individual strains of microorganisms in the accumulation of 137Cs by plants of vetch (Vicia sativa L.), under the influence of seed pre-sowing inoculation by microorganisms used in agriculture as biofertilizers and cultivated on substrate contaminated by radionuclides. Methods. Laboratory and field experiments, microbiological, gamma spectrometry. Results. The changes of morphometric indices of plants due to bacterial microflora activity are described. The modification of the radionuclide accumulation coefficient under the influence of microorganisms-inoculants has been calculated. The most effective complexes of strains of microorganisms that can reduces the accumulation of radionuclide by green mass of plants are determined. Conclusions. Using seed inoculation by bacterial strains while cultivating on radionuclide-contaminated soil was proposed as an additional measure to reduce the accumulation of radionuclides in green mass of plants. Keywords: accumulation coefficient, Vicia sativa L., 137Cs, bacterial preparations.


1982 ◽  
Vol 62 (3) ◽  
pp. 503-517 ◽  
Author(s):  
MARCEL GIROUX

The objectives of this work were to determine the effects of N-fertilizer sources, rates and fractionation on potato (Solanum tuberosum L.) yields, petiole-N content, defoliation and tuber specific gravity. To achieve these ends, urea and ammonium nitrate were side-dressed at 0, 70, 140 and 210 kg N/ha, by applying either all at planting or by fractionating the applications into half at planting and the other half a month later. The field experiments were carried out on eight sites consisting of six soil series. Nitrogen fertilization increased yields on all sites; the rate required for attaining maximum yields varied for 130 to 210 kg N/ha, according to the experimental site, with an average of 180 kg N/ha. Generally, both N-sources and fertilization methods had similar effects on yields defoliation, petiole N-content and tuber specific gravity. A 210-kg urea-N application at planting on the Lapointe loamy sand, however, decreased yields significantly. The importance of soil type, available water and total soil-N are discussed in relation to the quantities of fertilizer-N required to achieve maximum yields.


1991 ◽  
Vol 39 (4) ◽  
pp. 225-236 ◽  
Author(s):  
J. Hassink ◽  
J.J. Neeteson

The effects of different management systems on soil organic N and C contents were studied on a sandy and loamy soil given various amounts of N fertilizers under rotational grazing, in the Netherlands. Differences in total soil N and C between grazed and mown fields were also investigated. On the loamy soil grazed plots N accumulated at 245 kg/ha per year, irrespective of the rate of applied N. Four years after the experiment was initiated both soil N and C contents were considerably higher under grazing than under mowing. The C/N ratio of soil organic matter was higher without N fertilizer application, especially in the top 5 cm. The amount of N returned to the soil by grazing was 71% and 57% in the sandy and the loamy soil, resp. (Abstract retrieved from CAB Abstracts by CABI’s permission)


Author(s):  
Subin Kalu ◽  
Gboyega Nathaniel Oyekoya ◽  
Per Ambus ◽  
Priit Tammeorg ◽  
Asko Simojoki ◽  
...  

AbstractA 15N tracing pot experiment was conducted using two types of wood-based biochars: a regular biochar and a Kon-Tiki-produced nutrient-enriched biochar, at two application rates (1% and 5% (w/w)), in addition to a fertilizer only and a control treatment. Ryegrass was sown in pots, all of which except controls received 15N-labelled fertilizer as either 15NH4NO3 or NH415NO3. We quantified the effect of biochar application on soil N2O emissions, as well as the fate of fertilizer-derived ammonium (NH4+) and nitrate (NO3−) in terms of their leaching from the soil, uptake into plant biomass, and recovery in the soil. We found that application of biochars reduced soil mineral N leaching and N2O emissions. Similarly, the higher biochar application rate of 5% significantly increased aboveground ryegrass biomass yield. However, no differences in N2O emissions and ryegrass biomass yields were observed between regular and nutrient-enriched biochar treatments, although mineral N leaching tended to be lower in the nutrient-enriched biochar treatment than in the regular biochar treatment. The 15N analysis revealed that biochar application increased the plant uptake of added nitrate, but reduced the plant uptake of added ammonium compared to the fertilizer only treatment. Thus, the uptake of total N derived from added NH4NO3 fertilizer was not affected by the biochar addition, and cannot explain the increase in plant biomass in biochar treatments. Instead, the increased plant biomass at the higher biochar application rate was attributed to the enhanced uptake of N derived from soil. This suggests that the interactions between biochar and native soil organic N may be important determinants of the availability of soil N to plant growth.


Genome ◽  
2010 ◽  
Vol 53 (11) ◽  
pp. 884-898 ◽  
Author(s):  
Jianjun Zhao ◽  
Anna Artemyeva ◽  
Dunia Pino Del Carpio ◽  
Ram Kumar Basnet ◽  
Ningwen Zhang ◽  
...  

A Brassica rapa collection of 239 accessions, based on two core collections representing different morphotypes from different geographical origins, is presented and its use for association mapping is illustrated for flowering time. We analyzed phenotypic variation of leaf and seed pod traits, plant architecture, and flowering time using data collected from three field experiments and evaluated the genetic diversity with a set of SSR markers. The Wageningen University and Research Centre (WUR) and the Vavilov Research Institute of Plant Industry (VIR) core collections had similar representations of most morphotypes, as illustrated by the phenotypic and genetic variation within these groups. The analysis of population structure revealed five subgroups in the collection, whereas previous studies of the WUR core collection indicated four subgroups; the fifth group identified consisted mainly of oil accessions from the VIR core collection, winter oils from Pakistan, and a number of other types. A very small group of summer oils is described, that is not related to other oil accessions. A candidate gene approach was chosen for association mapping of flowering time with a BrFLC1 biallelic CAPS marker and a BrFLC2 multiallelic SSR marker. The two markers were significantly associated with flowering time, but their effects were confined to certain morphotypes and (or) alleles. Based on these results, we discuss the optimal design for an association mapping population and the need to fix the heterogeneous accessions to facilitate phenotyping and genotyping.


2000 ◽  
Vol 135 (4) ◽  
pp. 335-346 ◽  
Author(s):  
A. WILCOX ◽  
N. H. PERRY ◽  
N. D. BOATMAN ◽  
K. CHANEY

Yields of arable crops are commonly lower on the crop margins or headlands, but the nature of the relationship between yield and distance from the crop edge has not been clearly defined, nor have the reasons for lower marginal yields. Surveys of 40 winter wheat headlands were carried out in 2 years to determine how yield changed with distance, and what factors might influence this relationship. Two field experiments were also conducted over 3 years in winter cereal headlands, in which the effect of distance was measured under conservation headland and conventional (fully sprayed) management.Yields in the headland surveys varied from 0·8 to 10·2 t/ha. An inverse polynomial regression model was fitted to yield and weed data. Best fits were obtained by using separate parameters for each site. Adjusting yields to take account of weed dry matter improved the non-linear fit between yield and distance from crop edge. Field experiments provided similar results but the non-linear relationship was not as apparent.There was a negative relationship between soil compaction, as measured by a cone penetrometer, and yield in one field experiment, where soil density values were relatively constant. No relationship was found between pattern of nitrogen fertilizer application and yield. Conservation headland management resulted in lower yield at one experimental site, especially in the third year, but not at the other site. Where yields were affected, weed dry matter was higher in conservation headland plots than in fully sprayed plots.Although greater weed competition appears to account for at least part of the observed yield reductions on headlands, the role of other factors, particularly soil compaction, needs further study. Increased weed infestation may be an indirect result of reduced crop competition caused by other adverse conditions.


1987 ◽  
Vol 108 (3) ◽  
pp. 609-615 ◽  
Author(s):  
I. Papastylianou ◽  
Th. Samios

SummaryUsing data from rotation studies in which barley or woollypod vetch were included, both cut for hay and preceding barley for grain, it is shown that forage barley gave higher dry-matter yield than woollypod vetch (3·74 v. 2·92 t/ha per year). However, the latter gave feedingstuff of higher nitrogen concentration and yield (86 kg N/ha per year for vetch v. 55 kg N/ha per year for barley). Rainfall was an important factor in controlling the yield of the two forages and the comparison between them in different years and sites. Barley following woollypod vetch gave higher grain yield than when following forage barley (2·36 v. 1·91 t/ha). Rotation sequences which included woollypod vetch had higher output of nitrogen (N) than input of fertilizer N with a positive value of 44–60 kg N/ha per year. In rotations where forage barley was followed by barley for grain the N balance between output and input was 5–6 kg N/ha. Total soil N was similar in the different rotations at the end of a 7-year period.


Sign in / Sign up

Export Citation Format

Share Document