scholarly journals Prediction of Cardiovascular Diseases based on Machine Learning

2021 ◽  
Vol 1 (1) ◽  
pp. 30-35
Author(s):  
Weicheng Sun ◽  
Ping Zhang ◽  
Zilin Wang ◽  
Dongxu Li

With the rapid development of artificial intelligence, it is very important to find the pattern of the data from the observed data and the functional dependency relationship between the data. By finding the existing functional dependencies, we can classify and predict them. At present, cardiovascular disease has become a major disease harmful to human health. As a disease with high mortality, the prediction problem of cardiovascular disease is becoming more and more urgent. However, some computer methods are mainly used for disease detection rather than prediction. If the computer method can be used to predict cardiovascular disease in advance and treat it as early as possible, then the consequences of the disease can be reduced to a certain extent. Diseases can be predicted by mechanical methods. Support vector machine (SVM) has strict mathematical theory support, and can deal with nonlinear classification after using kernel techniques. Therefore, support vector machine can be used to predict cardiovascular disease. On the other hand, we also use logical regression and random forest to predict cardiovascular disease. This paper mainly uses the method of machine learning to predict whether the population is sick or not. First of all, we preprocess the obtained data to improve the quality of the data, and then use svm and logical regression to predict, so as to provide reference for the prevention and treatment of cardiovascular diseases.

Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 228
Author(s):  
Min-Jeong Kim

Smartwatches have the potential to support health care in everyday life by supporting self-monitoring of health conditions and personal activities. This paper aims to develop a model that predicts the prevalence of cardiovascular disease using health-related data that can be easily measured by smartwatch users. To this end, the data corresponding to the health-related data variables provided by the smartwatch are selected from the Korea National Health and Nutrition Examination Survey. To classify the prevalence of cardiovascular disease with these selected variables, we apply logistic regression, artificial neural network, and support vector machine among machine learning classification techniques, and compare the appropriateness of the algorithm through classification performance indicators. The prediction model using support vector machine showed the highest accuracy. Next, we analyze which structures or parameters of the support vector machine contribute to increasing accuracy and derive the importance of input variables. Since it is very important to diagnose cardiovascular disease early correctly, we expect that this model will be very useful if there is a tool to predict whether cardiovascular disease develops or not.


2020 ◽  
Vol 17 ◽  
Author(s):  
Juntao Li ◽  
Kanglei Zhou ◽  
Bingyu Mu

: With the rapid development of high-throughput techniques, mass spectrometry has been widely used for largescale protein analysis. To search for the existing proteins, discover biomarkers, and diagnose and prognose diseases, machine learning methods are applied in mass spectrometry data analysis. This paper reviews the applications of five kinds of machine learning methods to mass spectrometry data analysis from an algorithmic point of view, including support vector machine, decision tree, random forest, naive Bayesian classifier and deep learning.


2021 ◽  
Vol 2136 (1) ◽  
pp. 012061
Author(s):  
Binjie Xia

Abstract In the rapid development of modern artificial intelligence, for the development of ecological construction, how to rationally use machine learning to promote the development of agricultural economy has become a focus of practice and scientific research. This paper takes ecological image recognition as an example to analyze how to use support vector machine in image processing technology and machine learning in deep learning to conduct in-depth research, and to optimize and improve the algorithm to build an ecological image recognition model.


2014 ◽  
Vol 989-994 ◽  
pp. 1913-1917
Author(s):  
Min Li ◽  
Meng Dong Chen ◽  
Xiang Bin Li

With the rapid development of network, texts which contain position, views and opinions of events are exploding. Texts of review contain author’s feelings, views and tendencies the author wants to express. People need to analyze these texts automatically to acquire sentiment tendency of the author. This paper presents a model for automatic text analysis about sentiment tendency on comment text. The model combines algorithms based on emotional dictionary and Support Vector Machine learning algorithm together, which takes advantage of both algorithms.


2020 ◽  
Vol 25 (1) ◽  
pp. 24-38
Author(s):  
Eka Patriya

Saham adalah instrumen pasar keuangan yang banyak dipilih oleh investor sebagai alternatif sumber keuangan, akan tetapi saham yang diperjual belikan di pasar keuangan sering mengalami fluktuasi harga (naik dan turun) yang tinggi. Para investor berpeluang tidak hanya mendapat keuntungan, tetapi juga dapat mengalami kerugian di masa mendatang. Salah satu indikator yang perlu diperhatikan oleh investor dalam berinvestasi saham adalah pergerakan Indeks Harga Saham Gabungan (IHSG). Tindakan dalam menganalisa IHSG merupakan hal yang penting dilakukan oleh investor dengan tujuan untuk menemukan suatu trend atau pola yang mungkin berulang dari pergerakan harga saham masa lalu, sehingga dapat digunakan untuk memprediksi pergerakan harga saham di masa mendatang. Salah satu metode yang dapat digunakan untuk memprediksi pergerakan harga saham secara akurat adalah machine learning. Pada penelitian ini dibuat sebuah model prediksi harga penutupan IHSG menggunakan algoritma Support Vector Regression (SVR) yang menghasilkan kemampuan prediksi dan generalisasi yang baik dengan nilai RMSE training dan testing sebesar 14.334 dan 20.281, serta MAPE training dan testing sebesar 0.211% dan 0.251%. Hasil penelitian ini diharapkan dapat membantu para investor dalam mengambil keputusan untuk menyusun strategi investasi saham.


2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 445-451
Author(s):  
Yifei Sun ◽  
Navid Rashedi ◽  
Vikrant Vaze ◽  
Parikshit Shah ◽  
Ryan Halter ◽  
...  

ABSTRACT Introduction Early prediction of the acute hypotensive episode (AHE) in critically ill patients has the potential to improve outcomes. In this study, we apply different machine learning algorithms to the MIMIC III Physionet dataset, containing more than 60,000 real-world intensive care unit records, to test commonly used machine learning technologies and compare their performances. Materials and Methods Five classification methods including K-nearest neighbor, logistic regression, support vector machine, random forest, and a deep learning method called long short-term memory are applied to predict an AHE 30 minutes in advance. An analysis comparing model performance when including versus excluding invasive features was conducted. To further study the pattern of the underlying mean arterial pressure (MAP), we apply a regression method to predict the continuous MAP values using linear regression over the next 60 minutes. Results Support vector machine yields the best performance in terms of recall (84%). Including the invasive features in the classification improves the performance significantly with both recall and precision increasing by more than 20 percentage points. We were able to predict the MAP with a root mean square error (a frequently used measure of the differences between the predicted values and the observed values) of 10 mmHg 60 minutes in the future. After converting continuous MAP predictions into AHE binary predictions, we achieve a 91% recall and 68% precision. In addition to predicting AHE, the MAP predictions provide clinically useful information regarding the timing and severity of the AHE occurrence. Conclusion We were able to predict AHE with precision and recall above 80% 30 minutes in advance with the large real-world dataset. The prediction of regression model can provide a more fine-grained, interpretable signal to practitioners. Model performance is improved by the inclusion of invasive features in predicting AHE, when compared to predicting the AHE based on only the available, restricted set of noninvasive technologies. This demonstrates the importance of exploring more noninvasive technologies for AHE prediction.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moojung Kim ◽  
Young Jae Kim ◽  
Sung Jin Park ◽  
Kwang Gi Kim ◽  
Pyung Chun Oh ◽  
...  

Abstract Background Annual influenza vaccination is an important public health measure to prevent influenza infections and is strongly recommended for cardiovascular disease (CVD) patients, especially in the current coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to develop a machine learning model to identify Korean adult CVD patients with low adherence to influenza vaccination Methods Adults with CVD (n = 815) from a nationally representative dataset of the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V) were analyzed. Among these adults, 500 (61.4%) had answered "yes" to whether they had received seasonal influenza vaccinations in the past 12 months. The classification process was performed using the logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) machine learning techniques. Because the Ministry of Health and Welfare in Korea offers free influenza immunization for the elderly, separate models were developed for the < 65 and ≥ 65 age groups. Results The accuracy of machine learning models using 16 variables as predictors of low influenza vaccination adherence was compared; for the ≥ 65 age group, XGB (84.7%) and RF (84.7%) have the best accuracies, followed by LR (82.7%) and SVM (77.6%). For the < 65 age group, SVM has the best accuracy (68.4%), followed by RF (64.9%), LR (63.2%), and XGB (61.4%). Conclusions The machine leaning models show comparable performance in classifying adult CVD patients with low adherence to influenza vaccination.


2021 ◽  
Vol 13 (5) ◽  
pp. 1004
Author(s):  
Song Li ◽  
Tianhe Xu ◽  
Nan Jiang ◽  
Honglei Yang ◽  
Shuaimin Wang ◽  
...  

The meteorological reanalysis data has been widely applied to derive zenith tropospheric delay (ZTD) with a high spatial and temporal resolution. With the rapid development of artificial intelligence, machine learning also begins as a high-efficiency tool to be employed in modeling and predicting ZTD. In this paper, we develop three new regional ZTD models based on the least squares support vector machine (LSSVM), using both the International GNSS Service (IGS)-ZTD products and European Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5) data over Europe throughout 2018. Among them, the ERA5 data is extended to ERA5S-ZTD and ERA5P-ZTD as the background data by the model method and integral method, respectively. Depending on different background data, three schemes are designed to construct ZTD models based on the LSSVM algorithm, including the without background data, with the ERA5S-ZTD, and with the ERA5P-ZTD. To investigate the advantage and feasibility of the proposed ZTD models, we evaluate the accuracy of two background data and three schemes by segmental comparison with the IGS-ZTD of 85 IGS stations in Europe. The results show that the overall average Root Mean Square Errors (RMSE) value of all sites is 30.1 mm for the ERA5S-ZTD, and 10.7 mm for the ERA5P-ZTD. The overall average RMSE is 25.8 mm, 22.9 mm, and 9 mm for the three schemes, respectively. Moreover, the overall improvement rate is 19.1% and 1.6% for the ZTD model with ERA5S-ZTD and ERA5P-ZTD, respectively. In order to explore the reason of the lower improvement for the ZTD model with ERA5P-ZTD, the loop verification is performed by estimating the ZTD values of each available IGS station. In actuality, the monthly improvement rate of estimated ZTD is positive for most stations, and the biggest improvement rate can even reach about 40%. The negative rate mainly comes from specific stations, these stations are located on the edge of the region, near the coast, as well as the lower similarity between the individual verified station and training stations.


Sign in / Sign up

Export Citation Format

Share Document