Microbial Population Inhibition Method Through Spectrophotometry Absorption of Visible Light Applied to Ecotoxicological Analyses

2020 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Pedro Henrique Mainardi ◽  
Ederio Dino Bidoia

Ecotoxicology is a science that studies the effects of pollutants and forecast their transformations on the environment. Ecotoxicological studies have been used in soil and water quality assessment, development and implementation of new techniques of water and effluent treatment, tools for better industrial management, bioremediation techniques and sustainable agriculture approaches. Microorganisms, which were seen to detain a fundamental importance in nutrient cycling and energy flow, have been increasingly used as bioindicators in ecotoxicological analyses. The populational inhibition of microbiological strains may be measured through the absorbance of visible light, an efficient, fast, low-cost and reliable method that has been widely used in qualitative and quantitative analysis. In this manuscript, a real textile effluent sample was analyzed regarding its electric conductivity, pH, turbidity, solids, alkalinity, biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and a spectrophotometry microbial population inhibition (MPI) method using the Bacillus subtilis bacteria and the Saccharomyces cerevisiae yeast. The EC20, EC50 and acute toxicity indexes were satisfactory in relation to the widely used method of light reduction of the Vibrio fischeri luminescence bacteria. The MPI was shown to be a feasible method to determine the hazardous effects caused by the textile effluent sample towards the microbial populations.

Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 394
Author(s):  
Norfatehah Basiron ◽  
Srimala Sreekantan ◽  
Lim Jit Kang ◽  
Hazizan Md Akil ◽  
Rabiatul Basria S.M.N. Mydin

The polyvinyl alcohol (PVA) and neem extract were grafted onto coupled oxides (3ZT-CO) via reflux process to stabilize the particles to form 3ZT-CO/PVA and 3ZT-CO/Neem. These were then incorporated into LLDPE by melt blending process to give LLDPE/3ZT-CO/PVA and LLDPE/3ZT-CO/Neem composites. The Neem and PVA stabilized particles showed high zeta potential and dispersed homogeneously in water. The stabilization process altered the shape of the particles due to plane growth along the (002) polar direction. The stabilizers acted as capping agents and initiated the one-dimensional growth. The alkyl chain groups from PVA increased the polarity of the LLDPE/3ZT-CO/PVA and played a dominant role in the water adsorption process to activate the photocatalytic activity. This was further enhanced by the homogeneous distribution of the particles and low degree of crystallinity (20.87%) of the LLDPE composites. LLDPE/3ZT-CO/PVA exhibited the highest photodegradation (93.95%), which was better than the non-stabilized particles. Therefore, the photocatalytic activity of a polymer composite can be enhanced by grafting PVA and neem onto couple oxides. The LLDPE/3ZT-CO/PVA composite was further used to treat textile effluent. The results showed the composite was able to remove dye color by 93.95% and to reduce biochemical oxygen demand (BOD) and chemical oxygen demand (COD) by 99.99%.


2020 ◽  
Vol 17 (35) ◽  
pp. 507-523
Author(s):  
Marina COMINOTE ◽  
Gabriel Libardi SILVA ◽  
Netalianne Mitchelle Fagundes HERINGER ◽  
Faiçal GAZEL ◽  
Renato César de Souza OLIVEIRA

Electroflocculation is a technique for liquid effluent treatment that has been widely used due to simplicity in operation and to the possibility of application in different types of effluents. This study aimed to evaluate the electroflocculation treatment efficiency, monitoring and controlling an effluent automatically from the textile industry, also considering a feasibility study to photovoltaic generation application. The electrofloculation tests were performed with raw effluent, in a batch reactor containing aluminum electrodes and glass vat. Sensors and a microcontroller make up the electronic system, which monitors and controls voltage, temperature, and time variables and also processes and sends the data to the computer. The tests consist of applying 1 and 2A current in a 3 liters volume taking aliquots in 5, 10, 15 min. The parameters analyzed were: pH, conductivity, turbidity, Chemical Oxygen Demand, and absorbance sweep in 200 to 800 nm range. The samples presented in the visible region a band with the maximum absorbance at 670nm; thus, it was decided to evaluate the system at this wavelength. The results of the electroflocculation tests showed that the best removal of turbidity, COD, and absorbance at 670nm occurred in the conditions of 2A / 10min, with average efficiency above 70%. A photovoltaic system was projected to meeting the demand for the energy electroflocculation system, whose analysis found that the best strategy is connecting the photovoltaic system to the electric power grid. Through financial simulation, It was identified as a significant energy-saving which offsets costs related to system installation. in conclusion, the system developed is efficient in textile effluent treatment and that the photovoltaic system meets the demand for energy from the electroflocculation system, ensuring project sustainability.


2013 ◽  
Vol 726-731 ◽  
pp. 2521-2525
Author(s):  
Zhi Yong Zhang ◽  
De Li Wu

Coking wastewater is a kind of recalcitrant wastewater including complicate compositions. Advanced treatment of coking wastewater by Fenton-Like reaction using pyrite as catalyst was investigated in this paper. The results show that the chemical oxygen demand (COD) of coking wastewater decreased significantly by method of coagulation combined with two-stage oxidation reaction. COD of wastewater can decrease from 250mg/l to 45mg/l after treatment, when 2g/L pyrite was used in each stage oxidation and the dosage of hydrogen peroxide (H2O2) is 0.2ml/l for first stage treatment, 0.1ml/l for second stage treatment respectively. The pyrite is effective to promote Fenton-Like reaction with low cost due to high utilization efficiency of H2O2, moreover, catalyst could be easily recovered and reused. The Fenton-Like reaction might be used as a potential alternative to advanced treatment of recalcitrant wastewater.


Author(s):  
Yanwen Wang ◽  
Rong Liang ◽  
Chao Qin ◽  
Lei Ren ◽  
Zhizhen Ye ◽  
...  

Antimony sulfide (Sb2S3) is a light absorbing material with strong visible light response, which is suitable for efficient and low-cost photoelectrodes. Nano-structured films have unique advantages in constructing photoelectrodes due...


2020 ◽  
Vol 11 (1) ◽  
pp. 174
Author(s):  
Konstantinos P. Papadopoulos ◽  
Christina N. Economou ◽  
Athanasia G. Tekerlekopoulou ◽  
Dimitris V. Vayenas

Algal/cyanobacterial biofilm photobioreactors provide an alternative technology to conventional photosynthetic systems for wastewater treatment based on high biomass production and easy biomass harvesting at low cost. This study introduces a novel cyanobacteria-based biofilm photobioreactor and assesses its performance in post-treatment of brewery wastewater and biomass production. Two different supporting materials (glass/polyurethane) were tested to investigate the effect of surface hydrophobicity on biomass attachment and overall reactor performance. The reactor exhibited high removal efficiency (over 65%) of the wastewater’s pollutants (chemical oxygen demand, nitrate, nitrite, ammonium, orthophosphate, and total Kjeldahl nitrogen), while biomass per reactor surface reached 13.1 and 12.8 g·m−2 corresponding to 406 and 392 mg·L−1 for glass and polyurethane, respectively, after 15 days of cultivation. The hydrophilic glass surface favored initial biomass adhesion, although eventually both materials yielded complete biomass attachment, highlighting that cell-to-cell interactions are the dominant adhesion mechanism in mature biofilms. It was also found that the biofilm accumulated up to 61% of its dry weight in carbohydrates at the end of cultivation, thus making the produced biomass a suitable feedstock for bioethanol production.


2012 ◽  
Vol 452-453 ◽  
pp. 1424-1428
Author(s):  
Han Min Tian ◽  
Li Jia Guo ◽  
Wen Feng Duan ◽  
Rui Xia Yang ◽  
Feng Lan Tian

By analyzing the transmitionce and heat rate of insulating antireflection films conposed by refractive-index adjustable SiO2 layer and TiO2 layers, the optimum combination of antireflection films of BIPV is obtained. The absorption rate at the ultraviolet part that wavelenght excessive inadequate 400nm of the optimized fils is 99.9%, which are directly designed on the surface of the low iron tempered glass panel of BIPV, and in the wavelength range 400nm-800nm, the visible light transmitionce rate is up to 99.5%, and the heat that wavelenght excessive 800nm is reflected of 20%. For the multilayer heat insulation films are composed with the same kind of material while with different refractive indexes, there is no projecting stress between these films and no constraints during the production process of different films for the possible low cost heat insulating of BIPV.


DYNA ◽  
2017 ◽  
Vol 84 (203) ◽  
pp. 291-297 ◽  
Author(s):  
Juan Carlos Cueva-Orjuela ◽  
Angelina Del Socorro Hormaza-Anaguano ◽  
Andrés Merino-Restrepo

En Colombia, la caña de azúcar representa el segundo cultivo con mayor extensión. Se estima que a partir de los ingenios azucareros se producen aproximadamente 6 millones de toneladas de bagazo de caña de azúcar, BCA, de los cuales 5 millones son utilizados ineficientemente para la quema de calderas. El BCA está compuesto principalmente por celulosa, hemicelulosa y lignina, posibilitando su uso como un potencial adsorbente. En particular, en esta investigación se evaluó la viabilidad del BCA para la remoción del rojo básico 46, RB46, en solución acuosa. El efecto de factores tales como el punto de carga cero, pH de la solución, tamaño de partícula, dosificación del adsorbente, concentración inicial del colorante, tiempo de contacto y fuerza iónica fueron evaluados a través de un diseño estadístico. Se obtuvo una remoción del 86.4% y la posterior optimización del proceso, a través un diseño de superficie de respuesta, permitió alcanzar una adsorción máxima del 95.0%. Estos resultados sugieren que el BCA representa una alternativa promisoria de un adsorbente no convencional que puede ser aprovechado para el tratamiento de efluentes coloreados.


Sign in / Sign up

Export Citation Format

Share Document