scholarly journals Efficacy of organic acids as an alternative to antibiotic growth promoters in weaned pigs

2018 ◽  
Vol 17 (06) ◽  
pp. 8-14
Author(s):  
Tung M. Che

The objective of the experiment was to compare effects of dietary supplementation of organic acids (ProHacid Advance, PRO) and antibiotics on growth performance, diarrhea incidence, frequency of antibiotic treatment, and E. coli shedding in weaned pigs. A total of 224 crossbred weaned pigs [(Yorkshire x Landrace) x Duroc; 29 days old)] were allotted to 1 of 4 treatments with 7 replicate pens of 8 pigs each according to sex, litter origin and weight in an RCBD. The 4 dietary treatments included (1) basal diet + 50 mg/kg neomycin and 10 mg/kg enramycin (positive control, PC), (2) basal diet without antibiotics (negative control, NC), (3) As 2 + 0.25% PRO, and (4) As 2 + 0.5% PRO. Over a 4-week study, the results showed that there were no differences in the average daily gain and average daily feed intake of pigs among the 4 treatments (P = 0.328). However, pigs fed the PC diet (1.642) and 0.25% PRO-supplemented diet (1.641) had a lower feed to gain ratio (P < 0.05) than those fed the NC diet (1.808). The diarrhea incidence of pigs fed the 0.25% PRO-supplemented diet (7.36%) was lower (P < 0.01) than that of pigs fed the PC diet (11.61%), NC diet (16.70%), and 0.5% PRO-supplemented diet (10.08%). The frequency of antibiotic treatment of pigs consuming the 0.25% PRO-supplemented diet (4.67%) was lower (P < 0.01) than that of pigs consuming the PC diet (7.33%), NC diet (9.53%) and 0.5% PRO-supplemented diet (7.65%). No differences were found in the number of fecal E. coli among the 4 treatments. In brief, 0.25% PRO added to a nursery pig diet would be considered a potential alternative to the use of antibiotics in feed, but further research on this aspect is needed

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 161-162
Author(s):  
Cynthia Jinno ◽  
Yijie He ◽  
Yanhong Liu

Abstract The objective of this study was to compare the dietary effects of Bacillus subtilis and antibiotics in intestinal microbiota of pigs experimentally infected with F18 E. coli. Forty-eight weaned pigs (6.17 ± 0.36 kg BW) were individually housed and randomly allotted in one of four treatments with 12 replicates per treatment: negative control (NC), positive control (PC), antibiotics, and B. subtilis (probiotics). Pigs in NC and PC were fed with basal diet without or with E. coli, respectively. Pigs with antibiotics and probiotics were challenged with E. coli and supplemented with 50 mg/kg of carbadox or 500 mg/kg of B. subtilis, respectively. After 7 days habituation period, pigs were inoculated with F18 E. coli at 1010 CFU/3 mL dose for three consecutive days. All pigs were euthanized to collect feces and digesta from jejunum, ileum, and colon on d 21 post-infection to perform 16S rRNA sequencing at the V4 hypervariable region. Downstream analysis was performed using QIIME2 (2019.4) and R. Kruskal-Wallis test followed by Conover test was used to analyze data in R. Colon digesta and feces have greater (P &lt; 0.05) alpha diversity than ileal and jejunal digesta. No difference was observed among treatments at different intestinal sites. Bray-Curtis PCoA plots displayed pronounced clusters of all treatment groups throughout all sites. Bacteroidetes and Proteobacteria were more (P &lt; 0.05) abundant but Firmicutes were less (P &lt; 0.05) abundant in ileal digesta of pigs fed with antibiotics than pigs in probiotics. Firmicutes were more (P &lt; 0.05) abundant in colon and feces of NC than of antibiotics. Bifidobacterium was least (P &lt; 0.05) abundant throughout all sites and Prevotella 1 was most (P &lt; 0.05) abundant in colon of pigs fed with antibiotics compared with other treatments. In conclusion, both B. subtilis and carbadox supplementation modified gut microbiota of weaned pigs challenged with F18 E. coli. However, the impacts are different and need further investigation.


ZOOTEC ◽  
2013 ◽  
Vol 33 (1) ◽  
pp. 35
Author(s):  
M. N. Regar ◽  
R. Mutia ◽  
S. D. Widhyari ◽  
Y. H. S. Kowel

ABSTRAKPenelitian ini dilakukan untuk menguji pengaruh pemberian kombinasi herbal dengan mineral zink dalam ransum broiler yang diinfeksi Escherichia coli (E. coli). Dua ratus ekor d.o.c (day old chick) dibagi secara acak ke dalam lima perlakuan, masing-masing perlakuan diulang empat kali sehingga terdapat 20 unit percobaan, setiap unit percobaan terdiri dari 10 ekor d.o.c. Anak ayam percobaan dipelihara selama 35 hari. Ransum perlakuan terdiri dari R1 = Pakan basal/ ayamsehat (kontrolnegatif); R2 = Pakan basal/ ayamdiinfeksiE.coli (kontrolpositif); R3= Pakan basal + serbukkunyit 1.5% + ZnO 180 ppm/ ayamdiinfeksiE.coli; R4 = Pakan basal + serbukbawangputih 2.5% + ZnO 180 ppm/ ayamdiinfeksiE.coli; R5 = Pakan basal + antibiotik/ ayamdiinfeksiE.coli.Penelitian menggunakan rancangan acak lengkap. Peubah yang diamati konsumsi ransum, pertambahan bobot badan, dan konversi ransum. Hasil dari penelitian ini menunjukkan bahwa pemberian kombinasi kunyit 1.5% dengan ZnO 180 ppm dan kombinasi bawang putih 2.5% dengan zink 180 ppm dalam ransum mampu memperlihatkan performa yang lebih baik.Kata Kunci:Daun ubi jalar, Pertambahan berat badan, Konsumsi ransum, Konversi ransum, Ayambroiler.ABSTRACTTHE EFFECT OF SUPPLEMENTA-TION SWEET POTATO LEAVES MEAL (Ipomea batatas) ON BROILER PERFORMANCE.This experiment was conducted to study the combination of herbal with zink in poultry diet on the performance of Escherichia coli – challenged broiler. Two hundred d.o.c unsexed were devided into five treatments and four replications, with ten chicks in each replicates. The treatments were R1 (basal diet as a negative control/ healhty chickens), R2 (basal diet as a positive control/ Escherichia coli challenged), R3 (basal diet +1.5% turmeric powder + ZnO 180 ppm/ Escherichia coli challenged), R4 (basal diet + 2.5% garlic powder + ZnO 180 ppm/ Escherichia coli challenged), and R5 (basal diet + antibiotic/ Escherichia coli challenged). Data were collected during 35 days, diet and water were offered ad libitum. The results of this research indicated that chickens fed basal diet + 1.5% turmeric powder + ZnO 180 ppm/ challenged Escherichia coli and chickens fed basal diet + 2.5% garlic powder +ZnO 180 ppm/ challenged Escherichia coli showed performances better than control .Keywords: Sweet potato leaves, Body weight, Consumtion ration, Convertion ration, Broiler


Author(s):  
K. Kozlowski ◽  
L. Nollet ◽  
A. Lanckriet ◽  
E. Vanderbeke ◽  
P. Mielnik ◽  
...  

AbstractThis study evaluated the effects of three different thermostable phytase variants, based on the AppA gene from E. coli (AppAT1, AppAT2 and AppAT3) on growth performance, nutrient digestibility and bone mineralisation in broiler chickens at inclusion levels of 250 and 500 FTU/kg. The eight treatment groups included a positive control (PC) which was sufficient in Ca and P, a negative control (NC, the same basal formulation as the PC, but reduced in Ca and P), and NC supplemented with AppAT1 at 250 and 500 FTU/kg (AppAT1-250 and AppAT1-500), AppAT2 at 250 and 500 FTU/kg (AppAT2-250 and AppAT2-500) and with AppAT3 at 250 and 500 FTU/kg (AppAT3-250 and AppAT3-500). Over the entire feeding period, body weight (BW) and average daily gain (ADG) were significantly higher in the PC group, with all phytase supplemented groups being statistically the same, compared to the NC group. Feed conversion (FCR) for the PC-fed birds (1.479) was significantly (P&lt;0.05) better compared to the NC birds (1.582) and those fed the AppAT3-250 diet (1.523). Reduced levels of Ca and P in the NC group led to significantly (P&lt;0.05) lower tibia ash (40.9%) compared to the PC group (47.4%). Birds fed the phytase diets had significantly higher tibia ash compared to the NC birds, with those from the AppAT2-500 and AppAT3-500 groups being statistically the same as the PC group. Diets AppAT1-500, AppAT2-250, AppAT2-500 and AppAT3-500 significantly increased Ca digestibility compared to the NC. Apparent total track digestibility (ATTD) of P was improved for AppAT1-500 and AppAT2-250. The ATTD of Ca and P for all of the phytase supplemented groups reached the same level of the PC and AppAT1-500 group. It was concluded that adding any of the phytases tested, especially when included at 500 FTU/kg to a feed reduced in Ca and P, led to improved performance and bone mineralisation back to the same levels as seen for the Ca and P sufficient diet.


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 79-80
Author(s):  
Yijie He ◽  
Kwangwook Kim ◽  
Cynthia Jinno ◽  
Lauren Kovanda ◽  
Seijoo Yang ◽  
...  

Abstract The objective of this experiment was to investigate the effects of Bacillus subtilis on growth performance, diarrhea and fecal β-hemolytic coliforms of weaned pigs experimentally infected with a strain of E. coli (F18, express genes of LT, STb, and SLT 2 toxins). Weaned pigs (n = 48, 6.17 ± 0.36 kg BW) were individually housed in disease containment rooms and randomly allotted to one of four dietary treatments: negative control (NC, control diet without E. coli challenge), positive control (PC, control diet with E. coli challenge), and supplementation of 50 mg/kg of carbadox or 500 mg/kg of Bacillus subtilis probiotics. The experiment lasted 28 d with 7 d before and 21 d after the first E. coli inoculation. The F18 E. coli were given to pigs at 1010 CFU/3 mL dose for three consecutive d. Diarrhea score was daily recorded for each pig to calculate frequency of diarrhea. Fecal samples were collected on d 0, 3, 7, 14, and 21 PI to analyze β-hemolytic coliforms. Data were analyzed using the Mixed Procedure of SAS. Pigs supplemented with carbadox had greater (P < 0.05) body weight on d 7, 14, and 21 PI than pigs in the PC and probiotics group. Supplementation of probiotics enhanced pig body weight on d 21 PI, compared with the PC. E. coli challenge reduced (P < 0.05) ADG and feed efficiency from d 0 to 21 PI, while supplementation of antibiotics or probiotics enhanced ADG and feed efficiency from d 0 to 21 PI. Pigs in carbadox and probiotics groups had reduced (P < 0.05) frequency of diarrhea throughout the experiment and fecal β-hemolytic coliforms on d 7 PI than pigs in the PC. In conclusion, supplementation of Bacillus subtilis could enhance disease resistance and promote growth performance of weaned pigs under disease challenge condition.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 203-203
Author(s):  
Kwangwook Kim ◽  
Yanhong Liu

Abstract Our previous studies have shown that supplementation of Bacillus subtilis enhanced growth rate, improved gut barrier function, and modified colon microbiome of weaned pigs infected with pathogenic Escherichia coli (E. coli). The objective of this experiment was to investigate the effects of Bacillus subtilis on colon digesta metabolomic profiles of weaned pigs experimentally infected with F18 E. coli. Forty-eight pigs (6.73 ± 0.77 kg BW) were individually housed in disease containment rooms and randomly allotted to one of the four treatments (12 pigs/treatment). Four treatments included negative control (NC), positive control (PC), low-dose (1.28 × 109 CFU Bacillus subtilis/kg feed), and high-dose (2.56 × 109 CFU Bacillus subtilis/kg feed). The experiment lasted 18 d [7 d before and 11 d after first inoculation (d 0)]. The F18 E. coli inoculum was orally provided to all pigs with the dose of 1010 cfu/3 mL for 3 consecutive days, except NC. Twenty-four pigs (6 pigs/treatment) were euthanized on d 5 post-inoculation (PI) and the remained pigs were euthanized on d 11 PI to collect colon digesta for the analysis of metabolomic profiles by gas chromatography time of flight-mass spectrometer (GCTOF-MS). All processed data were statistically analyzed and evaluated by online MetaboAnalyst tool. No significant differences were observed in the metabolites between NC and PC on d 5 and 11 PI. Compared with PC, low- and high-dose Bacillus subtilis reduced (Fold change &gt; 1.5; FDR &lt; 0.20) four metabolites (proline, 2-hydroxyglutaric acid, lysine, and glutamic acid) and two metabolites (ribose, and D-xylulose) in colon digesta on d 5 PI, respectively. These metabolites were related to aminoacyl-tRNA-biosynthesis, arginine and proline metabolism, and lysine degradation. In conclusion, supplementation of Bacillus subtilis modified the levels of microbial metabolites associated with amino acid metabolism in colon digesta of pigs.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Alan W Duttlinger ◽  
Kouassi R Kpodo ◽  
Allan P Schinckel ◽  
Brian T Richert ◽  
Jay S Johnson

Abstract Supplementing nursery diets with 0.20% L-glutamine (GLN) may provide similar growth and health benefits as dietary antibiotics, but it was unknown if greater inclusion levels may provide additional benefits. Therefore, the study objective was to evaluate the impact of replacing dietary antibiotics with increasing GLN levels on growth performance, therapeutic antibiotic treatment rates, welfare measures, and production costs in pigs after weaning and transport. We hypothesized that withholding dietary antibiotics may negatively impact performance and increase therapeutic treatment rate, and that diet supplementation with 0.20% to 1.00% GLN may incrementally improve productivity and reduce therapeutic antibiotic treatment rates compared with dietary antibiotics. Mixed sex pigs (N = 308; 5.64 ± 0.06 kg body weight [BW]) were weaned (19.1 ± 0.2 d of age) and transported in central Indiana in 2017. Pigs were blocked by BW and allotted to one of seven dietary treatments (n = 8 pens/dietary treatment): dietary antibiotics (positive control [PC]; chlortetracycline [441 mg/kg] + tiamulin [38.6 mg/kg]), no antibiotics or added GLN (negative control [NC]), 0.20% GLN, 0.40% GLN, 0.60% GLN, 0.80% GLN, or 1.00% GLN fed for 14 d. From d 14 to 35, pigs were provided nonantibiotic common diets in two phases. Overall, average daily gain (ADG) was reduced (P = 0.01; 17.7%) from d 0 to 14 in NC, 0.20% GLN, 0.60% GLN, 0.80% GLN, and 1.00% GLN pigs compared with PC pigs, but no ADG differences were detected between 0.40% GLN pigs and PC pigs. Increasing GLN in the diet tended to increase ADG (linear; P = 0.10). Overall, d 35 BW was greater (P = 0.01) in 0.80% GLN and PC pigs compared with NC, 0.20% GLN, and 0.60% GLN pigs, and was greater for 0.40% GLN and 1.00% GLN pigs vs. 0.20% GLN pigs. However, no d 35 BW differences were detected (P &gt; 0.05) between PC, 0.40% GLN, 0.80% GLN, and 1.00% GLN pigs. Increasing GLN in the diet tended to increase (linear; P = 0.08) d 35 BW. Overall, income over feed and therapeutic injectable antibiotics cost (IOFAC) for enteric and unthrifty challenges were greater (P = 0.02) in 0.80% GLN pigs compared with NC, 0.20% GLN, and 0.60% GLN pigs, but no IOFACs for enteric and unthrifty challenges differences were detected between 0.80% GLN pigs and 0.40% GLN, 1.00% GLN, and PC pigs. In conclusion, GLN supplemented pigs had improved performance after weaning and transport compared with the NC pigs with 0.40% GLN being the most effective level.


2019 ◽  
Author(s):  
Sujuan Ding ◽  
Yongwei Wang ◽  
Wenxin Yan ◽  
Aike Li ◽  
Hongmei Jiang ◽  
...  

AbstractOne-day-old broilers were randomly allocated to 5 treatments: basal diet challenged by saline (negative control, n-control); basal diet and challenged by E.coil O78 (positive control, p-control); supplementation with L. plantarum 15-1 at 1×108 CFU/kg challenged with E.coil O78 (LP); supplementation with FOS at 5 g/kg challenged with E.coil O78 (FOS); supplementation with L. plantarum 15-1 and FOS challenged with E.coil O78 (LP+FOS). L. plantarum 15-1 or FOS had a lowered effect (P<0.05) on crypt depth on d 14 compared with two controls, and L. plantarum 15-1, FOS and L. plantarum 15-1+FOS also reduced relative to p-control on d 21. L. plantarum 15-1 reduced the level of diamine oxidase (DAO) at d 14 and 21 compared with p-control (P<0.05), the broilers with L. plantarum 15-1 and FOS increased the concentration of IgA and IgG relative to two control, and decreased diamine oxidase (DAO) compared with p-control (P 0.05). L. plantarum 15-1 increased the concentration of acetic acid and total short-chain fatty acid (SCFA) in comparison with p-control at d 14 (P<0.05), FOS improved the level of valeric acid and total SCFA relative to p-control at d 21 (P<0.001), the broilers fed L. plantarum 15-1 and FOS were increased the level of butyric acid at d 14 (P<0.05). FOS enhanced bursal index of broilers at d 21 (P<0.05). L. plantarum 15-1 and FOS did no effect on the growth performance. In conclusion, FOS can promote average daily gain, L. plantarum 15-1 and FOS can improve intestinal morphology, and increase the concentration of SCFA in cecal contents in broilers challenged with E.coil O78. These results suggest that L. plantarum 15-1 and FOS have effective mitigation to E. coil O78 via lowing reducing the intestinal injury and enhancing the immune responses.


Author(s):  
Jinyoung Lee ◽  
Jong Woong Kim ◽  
Heidi N. Hall ◽  
Charles M. Nyachoti

This study was conducted to investigate the effects of dietary supplementation with different organic acid (<b>OA</b>) mixtures on growth performance, nutrient digestibility, and gut morphology in weaned pigs. A total of 56 weaned pigs (7.93 ± 1.04 kg body weight) were assigned to four dietary treatments with seven replicates per treatment for a 35-d study conducted over two phases; phase 1 (d 1 to 14) and phase 2 (d 14 to 35). Diets consisted of 1) a corn-soybean meal-basal diet without any additive (negative control, <b>NC</b>); 2) NC + formic and propionic acids (<b>TRT1</b>); 3) NC + butyric, formic, and propionic acids (<b>TRT2</b>); and 4) NC + antibiotic (positive control, <b>PC</b>). During the overall period, the gain to feed ratio of pigs fed the PC and TRT1 diets tended to be higher (<i>P</i> = 0.059) than that of the NC diet. However, OA supplementation had no effects on nutrient digestibility. Jejunal villus height to crypt depth ratio was higher (<i>P</i> < 0.05) in pigs fed the TRT1 diet than those fed the NC diet. In conclusion, dietary OA supplementation tended to increase overall feed efficiency and improved gut morphology in weaned pigs.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3199
Author(s):  
Alejandra Domínguez-Negrete ◽  
Sergio Gómez-Rosales ◽  
María de Lourdes Angeles ◽  
Luis Humberto López-Hernández ◽  
Tercia Cesaria Reis de Souza ◽  
...  

Different sources and inclusion levels of humic substances (HS) have been tested in broiler rations as an alternative to the addition of growth promoter antibiotics (GPA) with promising results. The current study was carried out to assess the influence of HS extracted from worm compost on broiler production parameters, carcass yield, tibia characteristics, lactic acid bacteria (LAB) counts, excretion of Eimeria oocysts, and antioxidant status of breast meat. A total of 1200 broilers were used, housed in groups of 30 per pen, and assigned to five treatments: 1 = basal diet with GPA (positive control), 2 = basal diet without GPA (negative control), 3–5 = basal diet with 0.15, 0.30, and 0.45% HS, respectively. The data was subjected to a variance analysis and orthogonal contrasts. The FI decreased linearly (p < 0.05) from 1–14, 29–42, and 1–42 days as the inclusion of HS in the feed increased. The FCR had quadratic responses (p < 0.01) from 29–42 and 1–42 days concerning the HS inclusion levels. Lactic acid bacteria was higher (p ˂ 0.05) in ten-day-old chicks with 0.45% HS in the diet. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity antioxidant potential decreased linearly (p < 0.05) concerning increasing HS in the feed. The results indicate that HS can be used as growth promoters in broiler feeds.


Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 81
Author(s):  
Yijie He ◽  
Yanhong Liu ◽  
Peng Ji

This study explored the metabolomic profiles in ileal mucosa and colon digesta in response to enterotoxigenic Escherichia coli F18 (ETEC) infection and dietary use of probiotics and low-dose antibiotics. Weaned pigs (n = 48, 6.17 ± 0.36 kg body weight) were randomly allotted to one of four treatments. Pigs in the negative control (NC) were fed a basal diet without ETEC challenge, whereas pigs in the positive control (PC), antibiotic, and probiotic groups were fed the basal diet, basal diet supplemented with 50 mg/kg of carbadox, or 500 mg/kg of Bacillus subtilis, respectively, and orally challenged with ETEC F18. All pigs were euthanized at day 21 post-inoculation to collect ileal mucosa and colon digesta for untargeted metabolomic profiling using gas chromatography coupled with time-of-flight mass spectrometry. Multivariate analysis highlighted a more distinct metabolomic profile of ileal mucosa metabolites in NC compared to the ETEC-challenged groups. The relative abundance of 19 metabolites from the ileal mucosa including polyamine, nucleotide, monosaccharides, fatty acids, and organic acids was significantly different between the NC and PC groups (q < 0.1). In colon digesta, differential metabolites including 2-monoolein, lactic acid, and maltose were reduced in the carbadox group compared with the probiotics group. In conclusion, several differential metabolites and metabolic pathways were identified in ileal mucosa, which may suggest an ongoing intestinal mucosal repair in the ileum of ETEC-challenged pigs on day 21 post-inoculation.


Sign in / Sign up

Export Citation Format

Share Document