Application of Well Control Technology in Drilling Engineering

2021 ◽  
Vol 3 (10) ◽  
pp. 42-44
Author(s):  
Xin Zhou ◽  

Drilling operation is the leader of the oil exploration and development industry. The complexity of the process determines the characteristics of high investment and high risk. The particularity of the operating conditions determines the characteristics of labor intensity, gravity, and three-dimensional intersection, which all make the drilling operation process have various risks. These risks affect the efficiency and progress of operations, and even cause major accidents in serious cases, leading to casualties and property losses. Therefore, it is necessary to further improve the well control safety technology, so that the drilling work will gradually move towards scientific, safe and refined technology development direction. Through field investigation and literature reading, the risk of drilling operation is analyzed, and the causes, classification and characteristics of drilling operation risk are summarized. This paper summarizes the complexity of drilling accidents and the importance of risk control research. Since the risk control of drilling operations involves many fields, this paper only makes preliminary analysis and exploration, and further research and exploration are needed to improve the risk control of drilling operations.

Author(s):  
H. X. Liang ◽  
Q. W. Wang ◽  
L. Q. Luo ◽  
Z. P. Feng

Three-dimensional numerical simulation was conducted to investigate the flow field and heat transfer performance of the Cross-Wavy Primary Surface (CWPS) recuperators for microturbines. Using high-effective compact recuperators to achieve high thermal efficiency is one of the key techniques in the development of microturbine in recent years. Recuperators need to have minimum volume and weight, high reliability and durability. Most important of all, they need to have high thermal-effectiveness and low pressure-losses so that the gas turbine system can achieve high thermal performances. These requirements have attracted some research efforts in designing and implementing low-cost and compact recuperators for gas turbine engines recently. One of the promising techniques to achieve this goal is the so-called primary surface channels with small hydraulic dimensions. In this paper, we conducted a three-dimensional numerical study of flow and heat transfer for the Cross-Wavy Primary Surface (CWPS) channels with two different geometries. In the CWPS configurations the secondary flow is created by means of curved and interrupted surfaces, which may disturb the thermal boundary layers and thus improve the thermal performances of the channels. To facilitate comparison, we chose the identical hydraulic diameters for the above four CWPS channels. Since our experiments on real recuperators showed that the Reynolds number ranges from 150 to 500 under the operating conditions, we implemented all the simulations under laminar flow situations. By analyzing the correlations of Nusselt numbers and friction factors vs. Reynolds numbers of the four CWPS channels, we found that the CWPS channels have superior and comprehensive thermal performance with high compactness, i.e., high heat transfer area to volume ratio, indicating excellent commercialized application in the compact recuperators.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Peter Fietkau ◽  
Bernd Bertsche

This paper describes an efficient transient elastohydrodynamic simulation method for gear contacts. The model uses oil films and elastic deformations directly in the multibody simulation, and is based on the Reynolds equation including squeeze and wedge terms as well as an elastic half-space. Two transient solutions to this problem, an analytical and a numerical one, were developed. The analytical solution is accomplished using assumptions for the gap shape and the pressure in the middle of the gap. The numerical problem is solved using multilevel multi-integration algorithms. With this approach, tooth impacts during gear rattling as well as highly loaded power-transmitting gear contacts can be investigated and lubrication conditions like gap heights or type of friction may be determined. The method was implemented in the multibody simulation environment SIMPACK. Therefore it is easy to transfer the developed element to other models and use it for a multitude of different engineering problems. A detailed three-dimensional elastic multibody model of an experimental transmission is used to validate the developed method. Important values of the gear contact like normal and tangential forces, proportion of dry friction, and minimum gap heights are calculated and studied for different conditions. In addition, pressure distributions on tooth flanks as well as gap forms are determined based on the numerical solution method. Finally, the simulation approach is validated with measurements and shows good consistency. The simulation model is therefore capable of predicting transient gear contact under different operating conditions such as load vibrations or gear rattling. Simulations of complete transmissions are possible and therefore a direct determination of transmission vibration behavior and structure-borne noise as well as of forces and lubrication conditions can be done.


2018 ◽  
Vol 21 (8) ◽  
pp. 1286-1297 ◽  
Author(s):  
Antonio Gil ◽  
Andrés Omar Tiseira ◽  
Luis Miguel García-Cuevas ◽  
Tatiana Rodríguez Usaquén ◽  
Guillaume Mijotte

Each of the elements that make up the turbocharger has been gradually improved. In order to ensure that the system does not experience any mechanical failures or loss of efficiency, it is important to study which engine-operating conditions could produce the highest failing rate. Common failing conditions in turbochargers are mostly achieved due to oil contamination and high temperatures in the bearing system. Thermal management becomes increasingly important for the required engine performance. Therefore, it has become necessary to have accurate temperature and heat transfer models. Most thermal design and analysis codes need data for validation; often the data available fall outside the range of conditions the engine experiences in reality leading to the need to interpolate and extrapolate disproportionately. This article presents a fast three-dimensional heat transfer model for computing internal temperatures in the central housing for non-water cooled turbochargers and its direct validation with experimental data at different engine-operating conditions of speed and load. The presented model allows a detailed study of the temperature rise of the central housing, lubrication channels, and maximum level of temperature at different points of the bearing system of an automotive turbocharger. It will let to evaluate thermal damage done to the system itself and influences on the working fluid temperatures, which leads to oil coke formation that can affect the performance of the engine. Thermal heat transfer properties obtained from this model can be used to feed and improve a radial lumped model of heat transfer that predicts only local internal temperatures. Model validation is illustrated, and finally, the main results are discussed.


Author(s):  
Valery Ponyavin ◽  
Taha Mohamed ◽  
Mohamed Trabia ◽  
Yitung Chen ◽  
Anthony E. Hechanova

Ceramics are suitable for use in high temperature applications as well as corrosive environment. These characteristics were the reason behind selection silicone carbide for a high temperature heat exchanger and chemical decomposer, which is a part of the Sulphur-Iodine (SI) thermo-chemical cycle. The heat exchanger is expected to operate in the range of 950°C. The proposed design is manufactured using fused ceramic layers that allow creation of micro-channels with dimensions below one millimeter. A proper design of the heat exchanges requires considering possibilities of failure due to stresses under both steady state and transient conditions. Temperature gradients within the heat exchanger ceramic components induce thermal stresses that dominate other stresses. A three-dimensional computational model is developed to investigate the fluid flow, heat transfer and stresses in the decomposer. Temperature distribution in the solid is imported to finite element software and used with pressure loads for stress analysis. The stress results are used to calculate probability of failure based on Weibull failure criteria. Earlier analysis showed that stress results at steady state operating conditions are satisfactory. The focus of this paper is to consider stresses that are induced during transient scenarios. In particular, the cases of startup and shutdown of the heat exchanger are considered. The paper presents an evaluation of the stresses in these two cases.


Lubricants ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 78 ◽  
Author(s):  
Gregory de Boer ◽  
Andreas Almqvist

A two-scale method for modelling the Elastohydrodynamic Lubrication (EHL) of tilted-pad bearings is derived and a range of solutions are presented. The method is developed from previous publications and is based on the Heterogeneous Multiscale Methods (HMM). It facilitates, by means of homogenization, incorporating the effects of surface topography in the analysis of tilted-pad bearings. New to this article is the investigation of three-dimensional bearings, including the effects of both ideal and real surface topographies, micro-cavitation, and the metamodeling procedure used in coupling the problem scales. Solutions for smooth bearing surfaces, and under pure hydrodynamic operating conditions, obtained with the present two-scale EHL model, demonstrate equivalence to those obtained from well-established homogenization methods. Solutions obtained for elastohydrodynamic operating conditions, show a dependency of the solution to the pad thickness and load capacity of the bearing. More precisely, the response for the real surface topography was found to be stiffer in comparison to the ideal. Micro-scale results demonstrate periodicity of the flow and surface topography and this is consistent with the requirements of the HMM. The means of selecting micro-scale simulations based on intermediate macro-scale solutions, in the metamodeling approach, was developed for larger dimensionality and subsequent calibration. An analysis of the present metamodeling approach indicates improved performance in comparison to previous studies.


1994 ◽  
Author(s):  
D. Muthuvel Murugan ◽  
Widen Tabakoff ◽  
Awatef Hamed

Detailed flow investigation in the downstream region of a radial inflow turbine has been performed using a three component Laser Doppler Velocimetry. The flow velocities are measured in the exit region of the turbine at off-design operating conditions. The results are presented as contour and vector plots of mean velocities, flow angles and turbulent stresses. The measured parameters are correlated to the rotor blade rotation to observe any periodic nature of the flow. The measurements reveal a complex flow pattern near the tip region at the rotor exit due to the interaction of the tip clearance flow. The degree of swirl of the flow near the tip region at the rotor exit is observed to be high due to the gross under turning of the flow near the tip region. The effect of the rotor on the exit flow field is observed in the proximity of the rotor exit.


Author(s):  
Yuping Wang ◽  
Mark Pellerin ◽  
Pravansu Mohanty ◽  
Subrata Sengupta

This paper focuses on the gas flow study of an ejector used in applications where moist gases are being entrained. Two parts of work are presented. In the first part, characteristics of gas flow inside an ejector, as well as the ejector's performance under various operating and geometric configurations, were studied with a three-dimensional computational model. Measurements were also performed for validation of the model. In the second part, focus was given to the potential condensation or desublimation phenomena that may occur inside an ejector when water vapor is included in the entrained stream. Experiments using light-attenuation method were performed to verify the presence of a second phase; then, the onset of phase change and the phase distribution were obtained numerically. A two-dimensional axis-symmetric model was developed based on the model used in the first part. User-defined functions were used to implement the phase-change criteria and particle prediction. A series of simulations were performed with various amounts of water vapor added into the entrained flow. It was found that both frost particles and water condensate could form inside the mixing tube depending on the operating conditions and water vapor concentrations. When the concentration exceeds 3% by mass, water vapor could condense throughout the mixing tube. Some preliminary results of the second phase particles formed, e.g., critical sizes and distributions, were also obtained to assist with the design and optimization of gas ejectors used in similar applications.


Author(s):  
M. H. Shojaee Fard ◽  
M. B. Ehghaghi ◽  
F. A. Boyaghchi

On the test bed of centrifugal pump, the centrifugal pump performance has been investigated using water and viscous oil as Newtonian fluids, whose kinematic viscosities are 1 × 10−6, 43 × 10−6 and 62 × 10−6 m2/s, respectively. Also, the finite volume method is used to model the three dimensional viscous fluids for different operating conditions. For these numerical simulations the SIMPLEC algorithm is used for solving governing equations of incompressible viscous/turbulent flows through the pump. The κ-ε turbulence model is adopted to describe the turbulent flow process. These simulations have been made with a steady calculation and using the multiple reference frame (MRF) technique to take into account the impeller-volute interaction. Numerical results are compared with the experimental characteristic curve for each viscous fluid. The data obtained allow the analysis of the main phenomena existent in this pump, such as: head, efficiency, power and pressure field changes for different operating conditions. Also, the correction factors for oils are obtained from the experimental for part loading (PL), best efficiency point (BEP) and over loading (OL) and the results are compared with proposed factors by American Hydraulic Institute (HIS) and Soviet Union (USSR). The comparisons between the numerical and experimental results show a good agreement.


Author(s):  
Mohammad R. Saadatmand

The aerodynamic design process leading to the production configuration of a 14 stage, 16:1 pressure ratio compressor for the Taurus 70 gas turbine is described. The performance of the compressor is measured and compared to the design intent. Overall compressor performance at the design condition was found to be close to design intent. Flow profiles measured by vane mounted instrumentation are presented and discussed. The flow through the first rotor blade has been modeled at different operating conditions using the Dawes (1987) three-dimensional viscous code and the results are compared to the experimental data. The CFD prediction agreed well with the experimental data across the blade span, including the pile up of the boundary layer on the corner of the hub and the suction surface. The rotor blade was also analyzed with different grid refinement and the results were compared with the test data.


Author(s):  
J. Paulon ◽  
C. Fradin ◽  
J. Poulain

Industrial pumps are generally used in a wide range of operating conditions from almost zero mass flow to mass flows larger than the design value. It has been often noted that the head-mass flow characteristic, at constant speed, presents a negative bump as the mass flow is somewhat smaller than the design mass flows. Flow and mechanical instabilities appear, which are unsafe for the facility. An experimental study has been undertaken in order to analyze and if possible to palliate these difficulties. A detailed flow analyzis has shown strong three dimensional effects and flow separations. From this better knowledge of the flow field, a particular device was designed and a strong attenuation of the negative bump was obtained.


Sign in / Sign up

Export Citation Format

Share Document