What can Africa Contribute to Global Meat Demand?

2009 ◽  
Vol 38 (3) ◽  
pp. 223-233 ◽  
Author(s):  
Karl M. Rich

While Africa has traditionally been constrained in world markets by low productivity, animal diseases and high standards for animal health and food safety, the growing demand for meat and the emergence of alternative policy mechanisms for facilitating exports could increase Africa's importance as a global supplier of livestock products. This paper outlines Africa's current role in global meat markets and highlights constraints and opportunities. A key constraint that militates against large-scale exports from Africa is its lack of competitiveness vis-à-vis competitors such as Brazil and India. Africa will need to invest in market development, productivity measures, feed resources and infrastructure to reduce production costs and facilitate effective marketing efforts.

The importance of the health of farm livestock is considered in relation to the need to economically produce enough human food of an acceptable quality. The control and eradication of important diseases is discussed. Success in this work has allowed the development of high performance breeds by genetic selection. It has also encouraged the development of large scale units and intensive husbandry techniques. These new production methods require high standards of management from all concerned, and represent considerable financial investment. Biochemists, geneticists, physiologists, veterinary surgeons, all have a part to play in the modern livestock industry. The work of the State Veterinary Service is seen as catalytic. The possible development of a disease surveillance unit is discussed, also the type of information required by both veterinary surgeons and farmers.


2021 ◽  
Vol 13 (10) ◽  
pp. 5359
Author(s):  
Afrika Onguko Okello ◽  
Jonathan Makau Nzuma ◽  
David Jakinda Otieno ◽  
Michael Kidoido ◽  
Chrysantus Mbi Tanga

The utilization of insect-based feeds (IBF) as an alternative protein source is increasingly gaining momentum worldwide owing to recent concerns over the impact of food systems on the environment. However, its large-scale adoption will depend on farmers’ acceptance of its key qualities. This study evaluates farmer’s perceptions of commercial IBF products and assesses the factors that would influence its adoption. It employs principal component analysis (PCA) to develop perception indices that are subsequently used in multiple regression analysis of survey data collected from a sample of 310 farmers. Over 90% of the farmers were ready and willing to use IBF. The PCA identified feed performance, social acceptability of the use of insects in feed formulation, feed versatility and marketability of livestock products reared on IBF as the key attributes that would inform farmers’ purchase decisions. Awareness of IBF attributes, group membership, off-farm income, wealth status and education significantly influenced farmers’ perceptions of IBF. Interventions such as experimental demonstrations that increase farmers’ technical knowledge on the productivity of livestock fed on IBF are crucial to reducing farmers’ uncertainties towards acceptability of IBF. Public partnerships with resource-endowed farmers and farmer groups are recommended to improve knowledge sharing on IBF.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Crosino ◽  
Elisa Moscato ◽  
Marco Blangetti ◽  
Gennaro Carotenuto ◽  
Federica Spina ◽  
...  

AbstractShort chain chitooligosaccharides (COs) are chitin derivative molecules involved in plant-fungus signaling during arbuscular mycorrhizal (AM) interactions. In host plants, COs activate a symbiotic signalling pathway that regulates AM-related gene expression. Furthermore, exogenous CO application was shown to promote AM establishment, with a major interest for agricultural applications of AM fungi as biofertilizers. Currently, the main source of commercial COs is from the shrimp processing industry, but purification costs and environmental concerns limit the convenience of this approach. In an attempt to find a low cost and low impact alternative, this work aimed to isolate, characterize and test the bioactivity of COs from selected strains of phylogenetically distant filamentous fungi: Pleurotus ostreatus, Cunninghamella bertholletiae and Trichoderma viride. Our optimized protocol successfully isolated short chain COs from lyophilized fungal biomass. Fungal COs were more acetylated and displayed a higher biological activity compared to shrimp-derived COs, a feature that—alongside low production costs—opens promising perspectives for the large scale use of COs in agriculture.


2008 ◽  
Vol 42 ◽  
pp. 71-85 ◽  
Author(s):  
J.A. Woolliams ◽  
O. Matika ◽  
J. Pattison

SummaryLivestock production faces major challenges through the coincidence of major drivers of change, some with conflicting directions. These are:1. An unprecedented global change in demands for traditional livestock products such as meat, milk and eggs.2. Large changes in the demographic and regional distribution of these demands.3. The need to reduce poverty in rural communities by providing sustainable livelihoods.4. The possible emergence of new agricultural outputs such as bio-fuels making a significant impact upon traditional production systems.5. A growing awareness of the need to reduce the environmental impact of livestock production.6. The uncertainty in the scale and impact of climate change. This paper explores these challenges from a scientific perspective in the face of the large-scale and selective erosion of our animal genetic resources, and concludes thai there is a stronger and more urgent need than ever before to secure the livestock genetic resources available to humankind through a comprehensive global conservation programme.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 462
Author(s):  
Houssame Boujjat ◽  
Sylvain Rodat ◽  
Stéphane Abanades

Solar biomass gasification is an attractive pathway to promote biomass valorization while chemically storing intermittent solar energy into solar fuels. The economic feasibility of a solar gasification process at a large scale for centralized H2 production was assessed, based on the discounted cash-flow rate of return method to calculate the minimum H2 production cost. H2 production costs from solar-only, hybrid and conventional autothermal biomass gasification were evaluated under various economic scenarios. Considering a biomass reference cost of 0.1 €/kg, and a land cost of 12.9 €/m2, H2 minimum price was estimated at 2.99 €/kgH2 and 2.48 €/kgH2 for the allothermal and hybrid processes, respectively, against 2.25 €/kgH2 in the conventional process. A sensitivity study showed that a 50% reduction in the heliostats and solar tower costs, combined with a lower land cost of below 0.5 €/m2, allowed reaching an area of competitiveness where the three processes meet. Furthermore, an increase in the biomass feedstock cost by a factor of 2 to 3 significantly undermined the profitability of the autothermal process, in favor of solar hybrid and solar-only gasification. A comparative study involving other solar and non-solar processes led to conclude on the profitability of fossil-based processes. However, reduced CO2 emissions from the solar process and the application of carbon credits are definitely in favor of solar gasification economics, which could become more competitive. The massive deployment of concentrated solar energy across the world in the coming years can significantly reduce the cost of the solar materials and components (heliostats), and thus further alleviate the financial cost of solar gasification.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 494
Author(s):  
Riccardo Lo Bianco ◽  
Primo Proietti ◽  
Luca Regni ◽  
Tiziano Caruso

The objective of fully mechanizing olive harvesting has been pursued since the 1970s to cope with labor shortages and increasing production costs. Only in the last twenty years, after adopting super-intensive planting systems and developing appropriate straddle machines, a solution seems to have been found. The spread of super-intensive plantings, however, raises serious environmental and social concerns, mainly because of the small number of cultivars that are currently used (basically 2), compared to over 100 cultivars today cultivated on a large scale across the world. Olive growing, indeed, insists on over 11 million hectares. Despite its being located mostly in the Mediterranean countries, the numerous olive growing districts are characterized by deep differences in climate and soil and in the frequency and nature of environmental stress. To date, the olive has coped with biotic and abiotic stress thanks to the great cultivar diversity. Pending that new technologies supporting plant breeding will provide a wider number of cultivars suitable for super-intensive systems, in the short term, new growing models must be developed. New olive orchards will need to exploit cultivars currently present in various olive-growing areas and favor increasing productions that are environmentally, socially, and economically sustainable. As in fruit growing, we should focus on “pedestrian olive orchards”, based on trees with small canopies and whose top can be easily reached by people from the ground and by machines (from the side of the top) that can carry out, in a targeted way, pesticide treatments, pruning and harvesting.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2179
Author(s):  
Xue Cheng ◽  
Yuchen Liu ◽  
Zhong Wang ◽  
Lujiang Qu ◽  
Zhonghua Ning

Dropping moisture (DM) refers to the water content in feces. High DM negatively affects poultry production, environment, production costs, and animal health. Heredity, nutrition, environment, and disease may affect DM level. DM has medium inheritability and is related to cage height in henhouses. We examined the relationship among DM level, production performance, and environmental factors at different locations at the same henhouse height and effects of three types of additives. We measured the correlation between environmental factors including temperature, humidity, CO2 concentration, absolute pressure, and DM levels and laying performance of 934 Rhode Island Red hens. DM level was not significantly associated with environmental factors or production performance. We divided 64 persistently high DM hens into control and treatment groups supplied with different additives (probiotics, anisodamine, and antibiotics). DM levels, laying performance, egg quality, and serum biochemical indices were determined. Compared with the control and antibiotics, probiotics significantly reduced DM levels and eggshell strength while improving yolk color but did not significantly affect production performance. The additives reduced the b value of eggshell color; compared with probiotics, anisodamine decreased serum globulin levels. Exogenous active yeast supplementation can significantly reduce DM levels.


Author(s):  
К.Н. Привалова ◽  
Р.Р. Каримов

Исследования по определению энергетической эффективности пастбищных систем со злаковыми и бобово-злаковыми травостоями проведены в Федеральном научном центре кормопроизводства и агроэкологии им. В. Р. Вильямса. В статье приведены результаты агроэнергетической оценки многовариантных пастбищных систем со злаковыми травостоями, созданными в 1946 году. Даны количественные показатели по сбору обменной энергии, совокупным затратам на её производство, окупаемости затрат в зависимости от системы ведения пастбищ. Изучена эффективность совокупных затрат в виде овеществлённого труда (на семена, удобрения, сельскохозяйственные машины, средства огораживания загонов и прочее) и живого труда (работы трактористов, пастухов и строителей и др.). Обоснована высокая агроэнергетическая эффективность изучаемых пастбищных систем благодаря мобилизации в продукционный процесс природных факторов, долевое участие которых в структуре производства обменной энергии составило 69–84%. Природные факторы, участвующие в продукционном процессе луговых агроэкосистем, характеризуются большим разнообразием. Это не только использование солнечной энергии и азотфиксация бобовыми травами, но и долголетие травостоев, самовозобновление фитоценозов, дерновообразовательный процесс (повышение плодородия почвы), получение дешёвого корма и улучшение здоровья животных при летнем выпасе. Роль возобновляемых природных факторов выявлена на основе балансового метода, принятого в экономике (по разнице сбора обменной энергии и антропогенных затрат). Благодаря ведущей роли природных факторов в структуре произведённой продукции агроэнергетический коэффициент окупаемости совокупных затрат антропогенной энергии (АК) за счёт сбора обменной энергии достигал 3–6 раз в среднем за 45 лет. Разработанные в результате долголетних исследований многовариантные энергосберегающие пастбищные системы обосновывают возможность рекомендовать их производству с учётом применения различного уровня энергозатрат. Ключевые слова: культурные пастбища, системы ведения, долголетние травостои, сбор обменной энергии, совокупные антропогенные затраты, окупаемость затрат. The investigation was conducted at the Federal Williams Research Center of Fodder Production and Agroecology and was aimed at testing energy efficiency of gramineous and legume-gramineous swards. This article presents the results obtained on pasture ecosystems with gramineous planted in 1946. Exchange energy yield, total production costs and economic effectiveness were analyzed. Total production costs comprised costs for seeds, fertilizers, machinery, construction materials, labor, etc. Introduction of natural factors into the production process resulted in higher energy efficiency. Their share amounted to 69–84% in the final exchange energy yield. There are a lot of natural factors that affect grass productivity such as solar energy, nitrogen-fixation, sward longevity and regeneration, soil fertility, low-cost feed production, and livestock health. The value of natural factors was determined according to the balance method (by the difference between exchange energy yield and anthropogenic costs). Since environmental factors had a leading role in the production process, the return rate raised by 3–6 times for 45 years due to exchange energy increase. Therefore, pasture ecosystems developed can be recommended for a large-scale forage production.


2008 ◽  
Vol 68 (4) ◽  
pp. 875-883 ◽  
Author(s):  
LH. Sipaúba-Tavares ◽  
AML. Pereira

Large-scale lab culture of Ankistrodesmus gracilis and Diaphanososma birgei were evaluated by studying the biology and biochemical composition of the species and production costs. Ankistrodesmus gracilis presented exponential growth until the 6th day, with approximately 144 x 10(4) cells.mL-1, followed by a sharp decrease to 90 x 10(4) cells.mL-1 (8th day). Algae cells tended to increase again from the 11th day and reached a maximum of 135 x 10(4) cells.mL-1 on the 17th day. D. birgei culture showed exponential growth until the 9th day with 140 x 10² individuals.L-1, and increased again as from the 12th day. Algae A. gracilis and zooplankton D. birgei contain 47 to 70% dry weight protein and over 5% dry weight carbohydrates. The most expensive items in the context of variable costs were labor and electricity. Data suggested that temperature, nutrients, light availability and culture management were determining factors on productivity. Results indicate that NPK (20-5-20) may be used directly as a good alternative for mass cultivation when low costs are taken into account, promoting adequate growth and nutritional value for cultured A. gracilis and D. birgei.


Author(s):  
Keiya Ishiyama ◽  
Ryo Koike ◽  
Yasuhiro Kakinuma ◽  
Tetsuya Suzuki ◽  
Takanori Mori

Additive manufacturing (AM) for metals has attracted attention from industry because of its great potential to enhance production efficiency and reduce production costs. Directed energy deposition (DED) is a metal AM process suitable to produce large-scale freeform metal products. DED entails irradiating the baseplate with a laser beam and launching the metal powder onto the molten spot to produce a metal part on the baseplate. Because the process enables powder from different materials to be used, DED is widely applicable to valuable production work such as for a dissimilar material joint, a graded material, or a part with a special structure. With regard to parts with a special structure, directional solidification can prospectively be used in the power plant and aerospace industries because it can enhance the stiffness in a specific direction via only a simple process. However, conventional approaches for directional solidification require a special mold in order to realize a long-lasting thermal gradient in the part. On the other hand, from the viewpoint of thermal distribution in a produced part, DED is able to control the gradient by controlling the position of the molten pool, i.e., the position of the laser spot. Moreover, unlike casting, the thermal gradient can be precisely oriented in the expected direction, because the laser supplies heat energy on the regulated spot. In this study, the applicability of DED to directional solidification in Inconel® 625 is theoretically and experimentally evaluated through metal structure observation and Vickers hardness measurements. Furthermore, the effect of two different cooling processes on directional solidification is also considered with the aim of improving the mechanical stiffness of a part produced by DED. The observations and experimental results show that both the cooling methods (baseplate cooling and intermittent treatment with coolant) are able to enhance the hardness while retaining the anisotropy.


Sign in / Sign up

Export Citation Format

Share Document