Early Neoproterozoic Gold Deposits of the Alto Guaporé Province, Southwestern Amazon Craton, Western Brazil

2021 ◽  
Author(s):  
Rodrigo Prudente de Melo ◽  
Marcos Aurélio Farias de Oliveira ◽  
Richard J. Goldfarb ◽  
Craig A. Johnson ◽  
Erin E. Marsh ◽  
...  

Abstract The Alto Guaporé gold province, southwestern Amazon craton, contains gold deposits that have been mined since the beginning of the 18th century and these deposits, together, have modern-day, pre-mining gold resources of at least 1.8 Moz. The ore is associated with quartz vein systems along the southeastern part of the Aguapei belt, a ~35 km wide and ~500 km long, NNW-trending shear zone formed due to reactivation of a terrane-bounding suture. The Aguapei belt evolved by ca. 1150–1100 Ma rifting and deposition of siliciclastic sediments in an aulacogen basin, followed by deformation and low-grade metamorphism of the sedimentary sequences during 1100–900 Ma terrane collision along the craton margin. The deformation was characterized by a compressional regime until ca. 950 Ma and transition to a transpressional setting during the final 50 m.y. The gold deposits are hosted in a variety of structures that are second-order to the main Aguapei shear zone. The Ernesto and Pau-a-Pique deposits are located ~40 km apart and at jogs along the Aguapei belt. They are marginal to pre-ore igneous rocks, with Ernesto hosted in the basal part of the metasedimentary Fortuna Formation that overlies tonalite and Pau-a-Pique at the contact between metasedimentary rocks and diorite. Three deformational phases comprise the compressional (D1 to D2) to transpressional (D3) tectonic events. In the Pau-a-Pique deposit and the deeper level of the Ernesto deposit, the ore-bearing veins are bedding parallel and follow D2 strike-slip and reverse fault zones, respectively. However, the veins formed during D3 reactivation of the older structures by an array of oblique accommodation faults. In contrast, ores at shallower levels of Ernesto, both in discordant and bedding-parallel veins, are hosted within a ~20-m-thick rigid metaconglomerate with associated dilation due to the structural complexity as sedimentary rocks of the Aguapei Group were folded around the dome-shaped roof of the pre-ore tonalite. The ores in both deposits, as well as in many other deposits of the province, are characterized by disseminated and vein-hosted pyrite. Gold occurs mainly as inclusions in the pyrite, with other hydrothermal phases comprising muscovite, Fe-Ti oxides, and minor apatite, chalcopyrite, and galena. Fluid inclusion data, coupled with stable isotope geochemistry and geothermometry, indicate that gold precipitated from a low-salinity, CO2-rich fluid at ~300°C and ~2.5 kbar. The source for the fluid and gold was the interbedded pelites during devolatilization of the Aguapei Group sequence. The aqueous-carbonic fluid inclusions and the narrow range of δ18O values of quartz (12 ± 1‰) from many auriferous veins from the central part of the province represent a regional ore-forming fluid. The broad range of δD for hydrous minerals (–116 to –55‰) reflects influx of small amounts of meteoric water into the steeply dipping shear zones during postgold exhumation. The 40Ar/39Ar geochronology from hydrothermal muscovite indicates a widespread hydrothermal event along the belt between 928 and 920 Ma. Collectively, the geological, geochronological, and geochemical data suggest that metamorphic fluids migrated laterally into and then upward along the Aguapei belt and deposited gold in lower-order structures where strain gradients existed between lithounits. The province has many characteristics of large orogenic gold provinces worldwide and represents a highly prospective and underexplored target region for early Neoproterozoic gold, a time period that generally is not well endowed in gold ores.

2007 ◽  
Vol 44 (7) ◽  
pp. 925-946 ◽  
Author(s):  
Jerry C DeWolfe ◽  
Bruno Lafrance ◽  
Greg M Stott

The Beardmore–Geraldton belt consists of steeply dipping, intercalated panels of metavolcanic and metasedimentary rocks along the southern margin of the granite–greenstone Wabigoon subprovince in the Archean Superior Province, Ontario. It is an important past-producing gold belt that includes classic epigenetic iron-formation-hosted deposits near Geraldton and turbidite-hosted deposits, north of Beardmore. The Brookbank gold prospect belongs to a third group of related gold deposits that formed along dextral shear zones localized at contacts between panels of metasedimentary and metavolcanic rocks. The Brookbank prospect occurs along a steeply dipping shear zone at the contact between footwall polymictic conglomerate and hanging-wall calc-alkaline arc basalt. Early during shearing the basalt acted as a structural and chemical trap that localized brittle deformation, veining, and gold deposition, ankerite–sericite–chlorite–epidote–pyrite alteration, and the replacement of metamorphic magnetite and ilmenite by gold-bearing pyrite. This produced a low grade (≤5 g/t Au) ankerite-rich alteration zone that extends up to 20 m into the hanging-wall basalt. Later during shearing, gold was deposited within higher grade (≤20 g/t Au) quartz–orthoclase–pyrite alteration zones superimposed on the wider ankerite-rich alteration zone. Auriferous quartz–carbonate veins oriented clockwise and counter-clockwise to the shear zone walls are folded and boudinaged, respectively, consistent with dextral slip along the shear zone. A key finding of the study is that different groups of gold deposits in the belt, including epigenetic iron formation gold deposits near Geraldton, formed during post-2690 Ma regional dextral transpression across the belt.


1999 ◽  
Vol 136 (1) ◽  
pp. 63-73 ◽  
Author(s):  
JOAKIM SAMUELSSON ◽  
HARALD STRAUSS

A newly measured and sampled section in the upper part of the early Neoproterozoic Visingsö Group, south central Sweden, has been investigated for its stable carbon and oxygen isotope geochemistry. The 30 m-thick succession crops out on the southeastern shore of Lake Vättern, close to the village of Boeryd, and consists mainly of black mudstones with carbonate lenses, some of which have been dolomitized. High H/C ratios of the kerogen preserved in the investigated succession indicate that organic carbon generally is well preserved. The observed δ13Corg values are comparable to previously observed Neoproterozoic organic carbon values, with the exception of a few exceptionally 13C-depleted kerogens, with δ13Corg[ges ]−41.1 ‰. The latter are interpreted to be the result of fermentative bacterial reworking of sedimentary organic matter. The Boeryd carbonates display an unusual array of heavy δ18O values (with δ18O[les ]+3.3 ‰) that are interpreted as reflecting deposition in an arid climate. Geochemical data indicate that the carbonates have been diagenetically altered, but only to a limited extent, and a range of δ13Ccarb values from +2.4 to +4.7 ‰ appears to be representative of the primary seawater composition for the time of deposition of the upper Visingsö unit. Positive carbonate isotope values are typical for lower Neoproterozoic, pre-Varangerian successions elsewhere. The C isotope values obtained from the Boeryd section, although not conclusive by themselves, are consistent with the formerly biostratigraphically and radiometrically inferred early Neoproterozoic age for the upper Visingsö Group.


Lithosphere ◽  
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Nicole Sequeira ◽  
Abhijit Bhattacharya

Abstract Curvilinear steep shear zones originate in different tectonic environments. In the Chottanagpur Gneiss Complex (CGC), the steeply dipping, left-lateral and transpressive Early Neoproterozoic Hundru Falls Shear Zone (HFSZ) with predominantly north-down kinematics comprises two domains, e.g., an arcuate NW-striking (in the west) to W-striking (in the east) domain with gently plunging stretching lineation that curves into a W-striking straight-walled domain with down-dip lineation. The basement-piercing HFSZ truncates a carapace of flat-lying amphibolite facies paraschist and granitoid mylonites, and recumbently folded anatectic gneisses. The carapace—inferred to be a midcrustal regional-scale low-angle detachment zone—structurally overlies an older basement of Early Mesoproterozoic anatectic gneisses intruded by Mid-Mesoproterozoic/Early Neoproterozoic granitoids unaffected by the Early Neoproterozoic extensional tectonics. The mean kinematic vorticity values in the steep HFSZ-hosted granitoids computed using the porphyroclast aspect ratio method are 0.74–0.83 and 0.51–0.65 in domains with shallow and steep lineations, respectively. The granitoid mylonites show a chessboard subgrain microstructure, but lack evidence for suprasolidus deformation. The timing relationship between the two domains is unclear. If the two HFSZ domains were contemporaneous, the domain of steep lineations with greater coaxial strain relative to the curvilinear domain formed due to strain partitioning induced by variations in mineralogy and/or temperature of the cooling granitoid plutons. Alternately, the domain of gently plunging lineations in the HFSZ was a distinct shear zone that curved into a subsequent straight-walled shear zone with steeply plunging lineation due to a northward shift in the convergence direction during deformation contemporaneous with the Early Neoproterozoic accretion of the CGC and the Singhbhum Craton.


2021 ◽  
Author(s):  
Quentin Masurel ◽  
Paul Morley ◽  
Nicolas Thébaud ◽  
Helen McFarlane

Abstract The ~15-Moz Ahafo South gold camp is located in southwest Ghana, the world’s premier Paleoproterozoic gold subprovince. Major orogenic gold deposits in the camp include Subika, Apensu, Awonsu, and Amoma. These deposits occur along an ~15-km strike length of the Kenyase-Yamfo shear zone, a major tectonostratigraphic boundary juxtaposing metamorphosed volcano-plutonic rocks of the Sefwi belt against metamorphosed volcano-sedimentary rocks of the Sunyani-Comoé basin. In this study, we document the geologic setting, structural geometry, and rheological architecture of the Ahafo South gold deposits based on the integration of field mapping, diamond drill core logging, 3-D geologic modeling, and the geologic interpretation of aeromagnetic data. At the camp scale, the Awonsu, Apensu, and Amoma deposits lie along strike from one another and share similar hanging-wall plutonic rocks and footwall volcano-sedimentary rocks. In contrast, the Subika gold deposit is hosted entirely in hanging-wall plutonic rocks. Steeper-dipping segments (e.g., Apensu, Awonsu, Subika) and right-hand flexures (e.g., Amoma, Apensu) in the Kenyase-Yamfo shear zone and subsidiary structures appear to have represented sites of enhanced damage and fluid flux (i.e., restraining bends). All gold deposits occur within structural domains bounded by discontinuous, low-displacement, sinistral N-striking tear faults oblique to the orogen-parallel Kenyase-Yamfo shear zone. At the deposit scale, ore-related hydrothermal alteration is zoned, with distal chlorite-sericite grading into proximal silica-albite-Fe-carbonate mineral assemblages. Alteration halos are restricted to narrow selvages around quartz-carbonate vein arrays in multiple stacked ore shoots at Subika, whereas these halos extend 30 to 100 m away from the ore zones at Apensu and Awonsu. There is a clear spatial association between shallow-dipping mafic dikes, mafic chonoliths, shear zones, and economic gold mineralization. The abundance of mafic dikes and chonoliths within intermediate to felsic hanging-wall plutonic host rocks provided rheological heterogeneity that favored the formation of enhanced fracture permeability, promoting the tapping of ore fluid(s). Our interpretation is that these stacked shallow-dipping mafic dike arrays also acted as aquitards, impeding upward fluid flow within the wider intrusive rock mass until a failure threshold was episodically reached due to fluid overpressure, resulting in transient fracture-controlled upward propagation of the ore-fluid(s). Our results indicate that high-grade ore shoots at Ahafo South form part of vertically extensive fluid conduit systems that are primarily controlled by the rheological architecture of the rock mass.


2021 ◽  
Author(s):  
Meixia Lyu ◽  
Shuyun Cao

<p><strong>Abstracts:</strong></p><p>Graphitic carbon-bearing rocks can occur in low- to high-grade metamorphic units. In low-grade matamorphic rocks, graphitic carbon is often associated with brittle fault gouge whereas in middle- to high-grade metamorphic rocks, graphitic carbon commonly occurs in marble, schist or paragneiss. Previous studies showed that carbonaceous material gradually ordered from the amorphous stage, e.g. graphitization, is mainly controlled by increasing thermal metamorphism and has a good correlation with the metamorphic temperature. Besides, this ordered process is irreversible and the resulting structure is not affected by late metamorphism. Subsequently, the degree of graphitization is believed to be a reliable indicator of peak temperature conditions in the metamorphic rock. In this contribution, based on detailed field observations, the variably deformed and metamorphosed graphitic gneisses to phyllites, located within the footwall and hanging-walls unit of the Cenozoic Ailaoshan-Red River strike-slip shear zone are studied. According to lithological features and temperature determined by Raman spectra of carbonaceous material, these graphitic rocks and deformation fabrics are divided into three types. Type I is represented by medium–grade metamorphism and strongly deformed rocks with an average temperature of 509 °C and a maximum temperature of 604 °C. Type II is affected by low-grade metamorphism and deformed rocks with an average temperature of 420 °C. Type III is affected by lower–grade metamorphism and occurs in weakly deformed/undeformed rocks with an average temperature of 350 °C. Slip–localized micro–shear zone and laterally continuous or discontinuous slip planes constituted by graphitic carbon aggregates are developed in Types I and II. The electron back–scattered diffraction (EBSD) lattice preferred orientation (LPO) patterns of graphitic carbon grains were firstly observed in comparison with LPO patterns of quartz and switch from basal <a>, rhomb <a> to prism <a> slip systems, which indicate increasing deformation temperatures. According to the graphitic slip–planes, micro–shear zones and mylonitic foliation constituted by graphitic carbon minerals, we also propose that the development of fine–grained amorphous carbon plays an important role in rheological weakening of the whole rock during progressive ductile shearing.</p><p><strong>Key Words:</strong> graphitic carbon, strain localization, graphitic thermometry, slip–localized micro–shear zone, rheological weakening</p>


2020 ◽  
Author(s):  
Giancarlo Molli ◽  
Andrea Brogi ◽  
Alfredo Caggianelli ◽  
Enrico Capezzuoli ◽  
Domenico Liotta ◽  
...  

<p>An updated revision of the upper Carboniferous-Permian tectonics recorded in Corsica, Calabria and Tuscany is here proposed. We combine our and literature data to document how the sedimentary, tectono-metamorphic and magmatic upper Carboniferous-Permian record fits with a regional-scale tectonic scenario characterized by trascurrent fault systems associated with stretched crustal domains in which extensional regional structures, magmatism and transtensional basins developed. In Corsica, altogether with well-known effusive and intrusive Permian magmatism, the alpine S.Lucia nappe exposes a kilometer-scale portion of the Permian lower to mid-crust, with many similarities to the Ivrea-Verbano zone. The two distinct Mafic and Leucogranitic complexes, which characterize this crustal domain are juxtposed by an oblique-slip shear zone named as S.Lucia Shear Zone. Structural and petrological data document interaction between magmatism, metamorphism and shearing during Permian in the c. 800-400 °C temperature range. In Calabria (Sila, Serre and Aspromonte), a continuous pre-Mesozoic crustal section is exposed. The lower crust portion of such section is mainly made up of granulites and migmatitic paragneisses with subordinate marbles and metabasites. The mid-crustal section includes an up to 13 km thick sequence of granitoids of tonalitic to granitic composition, emplaced between 306 and 295 Ma and progressively deformed during retrograde extensional shearing to end with a final magmatic activity between 295 and 277 Ma, consisting in the injection of shallower dykes in a transtensional regime. The section is completed by an upper crustal portion mainly formed by a Paleozoic succession deformed as a low-grade fold and thrust belt, locally overlaying medium-grade paragneiss units, and therefore as a whole reminiscent of the external/nappe zone domains of Sardinia Hercynian orogen. In Tuscany we document, how late Carboniferous/Permian shallow marine to continental sedimentary basins characterized by unconformity and abrupt change in sedimentary facies (coal-measures, red fanglomerate deposits) and acid magmatism well fit a transtensional setting with a mid-crustal shear zone linked with a system of E-W trending (in present orientation) upper crust splay faults. We will frame the whole dataset in a regional framework of first-order transcurrent shear zones network which includes a westernmost S.Lucia Shear Zone and an easternmost East Tuscan Shear Zone, with intervening crustal domains in which extensional to transtensional shearing occured.</p>


1989 ◽  
Vol 26 (12) ◽  
pp. 2645-2660 ◽  
Author(s):  
P. G. Anderson ◽  
C. Jay Hodgson

The Erickson gold mine is a typical gold quartz vein deposit. The veins are hosted by a thrust-imbricated, gently dipping, synformal allochthon of low-grade metamorphic, Devonian to Upper Triassic basalts, argillites, and peridotites of oceancrustal origin belonging to the Sylvester Group, part of the Slide Mountain assemblage. The Sylvester allochthon lies concordantly on Devonian miogeoclinal sedimentary rocks of the North American continental margin and was emplaced in the Middle Jurassic as a result of the collision of the Quesnel arc with North America. The veins in the mine are hosted mainly by a moderately dipping system of shear zones with approximately orthorhombic symmetry, indicating a triaxial bulk, inhomogeneous strain pattern superimposed on the earlier formed, gently dipping thrusts. Steeply dipping extension veinlets, rotation of schistosity, and downdip slickenlines indicate the maximum shortening axis was subvertical. The veins display complex superimposed ribbon and breccia textures, indicating incremental growth. Most of the gold occurs in association with tetrahedrite, sphalerite, and chalcopyrite in steeply dipping, late, grey quartz veinlets localized within and striking perpendicular to the main veins. The vein-forming event, dated at 130 Ma, appears to have been related to extension and high heat flow associated with the rise of the Omenica geanticline, in turn the result of crustal thickening caused by the collision of the amalgamated Quesnel arc – North America plate with Stikinia in the Middle Jurassic.


Solid Earth ◽  
2017 ◽  
Vol 8 (4) ◽  
pp. 767-788 ◽  
Author(s):  
Giancarlo Molli ◽  
Luca Menegon ◽  
Alessandro Malasoma

Abstract. The switching in deformation mode (from distributed to localized) and mechanisms (viscous versus frictional) represent a relevant issue in the frame of crustal deformation, being also connected with the concept of the brittle–ductile transition and seismogenesis. In a subduction environment, switching in deformation mode and mechanisms and scale of localization may be inferred along the subduction interface, in a transition zone between the highly coupled (seismogenic zone) and decoupled deeper aseismic domain (stable slip). However, the role of brittle precursors in nucleating crystal-plastic shear zones has received more and more consideration being now recognized as fundamental in some cases for the localization of deformation and shear zone development, thus representing a case in which switching deformation mechanisms and scale and style of localization (deformation mode) interact and relate to each other. This contribution analyses an example of a millimetre-scale shear zone localized by brittle precursor formed within a host granitic protomylonite. The studied structures, developed in ambient pressure–temperature (P–T) conditions of low-grade blueschist facies (temperature T of ca. 300 °C and pressure P ≥ 0. 70 GPa) during involvement of Corsican continental crust in the Alpine subduction. We used a multidisciplinary approach by combining detailed microstructural and petrographic analyses, crystallographic preferred orientation by electron backscatter diffraction (EBSD), and palaeopiezometric studies on a selected sample to support an evolutionary model and deformation path for subducted continental crust. We infer that the studied structures, possibly formed by transient instability associated with fluctuations of pore fluid pressure and episodic strain rate variations, may be considered as a small-scale example of fault behaviour associated with a cycle of interseismic creep and coseismic rupture or a new analogue for episodic tremors and slow-slip structures. Our case study represents, therefore, a fossil example of association of fault structures related to stick-slip strain accommodation during subduction of continental crust.


2021 ◽  
pp. SP516-2020-29
Author(s):  
Vincent Combes ◽  
Aurélien Eglinger ◽  
Anne-Sylvie Andre-Mayer ◽  
Yoram Teitler ◽  
Arnauld Heuret ◽  
...  

AbstractThe Yaou deposit, located in French Guiana within the Guiana Shield, is one of the most promising gold deposits of the regional Palaeoproterozoic greenstone belt. It displays numerous quartz monzodiorite bodies aligned along a sinistral shear zone where a five-deformation phases model is established at the camp scale. The ductile D1/2YA phase is responsible for the main penetrative foliation while the D3YA phase is related to shearing. An intrusive event is identified as being pre to syn-D3YA. The following phase D4YA represents a brittle quartz-carbonate veining set hosted preferentially within intrusive bodies and along the shear zone. A local D5YA brecciation event crosscuts the D4YA veins. Among this deformation history, two auriferous events (D3YA and D4YA) control the overall grade of the Yaou gold deposit. More specifically, most of the Au grade is associated with the main economic D4YA veining event, where the gold is visible and linked to Py4 within an ankerite/hematite rich alteration halo. At the microscopic scale, results of in situ analyses using LA-ICP-MS on pyrite show that metasediment-hosted Py0 is a primary source of submicroscopic gold having a low contribution to the total endowment. Py3 shows some gold content due to possible remobilisation of AuD0YA. Gold in Py4 is found as submicroscopic gold, as micro-inclusions and as infilling fractures in association with elements such as Te, Ag and Bi. Most contribution to the Au grade is from micro-inclusions and, to a lesser extent, from free and submicroscopic gold. The ore shoot locations are lithologically controlled for AuD0YA (metasedimentary unit-hosted), structurally controlled (shear zone-hosted) for AuD3YA and rheologically controlled for the AuD4YA (intrusion-hosted). The deposit is clearly polyphase both at the macroscopic and the microscopic scales, invisible gold is associated with As whereas visible gold is observed as inclusions in pyrite with high contents of Ag, Te and Bi. We define an early low-grade enrichment of AuD0YA to AuD3YA followed by a later high-grade event, AuD4YA supporting polyphase mineralisation processes. This study confirms that orogenic gold deposits can be formed by remobilisation and/or new gold inputs during multiple deformation, veining and hydrothermal events.


2000 ◽  
Vol 37 (9) ◽  
pp. 1245-1257 ◽  
Author(s):  
N Culshaw ◽  
T Brown ◽  
P H Reynolds ◽  
J WF Ketchum

The polyphase Kanairiktok shear zone (KNSZ) separates gneissic rocks of the Archean Nain craton from their reworked equivalents in the Paleoproterozoic Kaipokok domain of the Makkovik Province. In its early stages, the KNSZ bounded the Kaipokok domain as it was thermally softened by 1895-1870 Ma Andean-type magmatism, accompanied by dextral oblique convergence and resultant penetrative deformation. The amphibolite-facies tectonite that developed in this stage was widely overprinted by greenschist-facies mylonite. Laserprobe and spectral 40Ar/39Ar ages of recrystallized and porphyroclastic muscovite, from the greenschist-facies mylonite and from muscovite in a syntectonic quartz vein, bracket the age of deformation between 1740 and 1710 Ma with the best estimate at 1715 Ma. These ages are similar to those of A-type granites within the Makkovik Province and amphibole cooling ages from the province interior. Together with the petrological similarity of the greenschist-facies mylonite to localized low-grade shear zones elsewhere in the Makkovik Province, they are suggestive of a widespread, lithosphere-scale event. The 40Ar/39Ar data do not provide good constraints on the early activity of the KNSZ. However, preservation of relationships between granitoid sheets correlated with the 1895-1870 Ma Island Harbour Bay plutonic suite and early fabrics imply that the granites were emplaced syntectonically in the KNSZ. Thus, the KNSZ was a major, long-lived structure in the Makkovik Province that decoupled events in the reactivated Nain craton from an inert cratonic region.


Sign in / Sign up

Export Citation Format

Share Document