scholarly journals Effect of Stabilization on Failure Susceptibility of Oshogbo-Iwo Road in South-Western Nigeria

Author(s):  
Bamitale Dorcas Oluyemi-Ayibiowu ◽  
Oladapo Jayejeje Omomomi ◽  
Olaolu George Fadugba

The research evaluated the failure susceptibility of biopolymers (Guar Gum, Xanthan Gum, Bentonite) and polyvinyl acetate (PVAc) stabilized soil samples from three failed locations along Oshogbo – Iwo Road’s using the TDRAMS mathematical model formulated by Aderinola et al., (2015). The stabilizers were added to the soils in concentrations of (0.25-2) % Biopolymers, (1-3) % Bentonite and 2% PVAc. The samples were classified according to AASHTO as A-5 (slty-sand) and ML group (inorganic silts, sfine sands with low plasticity) based on USCS classification system. Geotechnical tests carried out on both natural untreated and treated samples showed that the natural soil samples gave OMC values of between (11.7-14.97) %, MDD (1644-1453.6) Kg/m3, and soaked CBR (2-6) %. 1% Guar gum, 1 % Xanthan gum, 3% Bentonite and 2% Poly vinyl Acetate were deduced to be optimal mixes for improved strength. However, Guar gum was observed to be the best stabilizer. With the TDRAMS model, 1% Guar gum reduced the failure susceptibility indices of the road by 11.02 % (i.e. from 127 to 113). However, for maximum benefits to be achieved from the stabilization, other factors like provision of good drainage facilities, adequate road sections etc. must be provided. This will help in improving the strength of the subgrade soils and overall durability of the road.

2021 ◽  
Vol 921 (1) ◽  
pp. 012042
Author(s):  
W Erwanto ◽  
R. R Parea. ◽  
A Ermitha.

Abstract Soil that has low bearing capacity has a bad impact on the construction that is built on it as a result of which the building is easily damaged such as lifting the foundation on the building and causing cracks and shifting on the road. This research uses experimental laboratory methods. Soil samples used were taken from Lembang Tondon Siba’ta, Tondon District. Corn cobs were taken from Sa’dan Marante, Sodium silicate is obtained from chemical figures and palm fiber taken from Buntu Tagari and then tested for soil physical characteristics and soil bearing capacity in soil samples with a mixture of sodium silicate, corncob ash, palm fiber and soil without mixture. know the bearing capacity of the soil. The results of the research on stabilized soil by adding 0.2% palm fiber, 2% corncob ash and 3% sodium silicate obtained an increase in soil bearing capacity of 9.73% from the original soil and the addition of 0.2% palm fiber, 4% corncob ash and 3% sodium silicate.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-7
Author(s):  
Damilola A. Ogundare

The need to improve the strength and durability of subgrade soil in recent times has become imperative using stabilizing materials that can be sourced locally at no/or very low cost in other to reach their design life span before a major repair is required. This necessitates the improvement that could be achieved by stabilizing subgrade soil along Ede-Abeere road in Ede, Osun State with the Waste Plastic Bottle (WPB). The soil samples were collected at 1m depth at different portions along the road and stabilized with varying percentages of WPB. Laboratory tests conducted were sieve analysis, natural moisture content, specific gravity, Atterberg limit, compaction, California Bearing Ratio (CBR), and Unconfined Compressive Strength (UCS) Test. The CBR of the stabilized soil ranges from 1.28% to 12.20% with 2.5% WPB having the highest CBR value of 12.20% meeting the recommended value for unsoaked CBR of subgrade soils. However, the statistical model reliably adjudged that there is a significant relationship between the CBR values of subgrade soil-WPB mixture obtained. Thus, it is recommended that WPB at 2.5% can serve as a stabilizing material as it increases the CBR of the subgrade soil and as an effective method of disposing of WPB.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Himanshu Kushwah ◽  
Nidhi Sandal ◽  
Meenakshi Chauhan ◽  
Gaurav Mittal

Abstract Background Uncontrolled bleeding is one of the primary reasons for preventable death in both civilian trauma and military battle field. This study evaluates in vitro and in vivo hemostatic potential of four biopolymeric natural gums, namely, gum tragacanth, guar gum, xanthan gum, and gum acacia. In vitro evaluation of whole blood clotting time and erythrocyte agglutination assay were carried out. In vitro cytotoxicity studies with respect to each gum were done in human lymphocytes to ascertain percent cell viability. In vivo hemostatic potential of each gum (as sponge dressing and powder form) was evaluated in Sprague Dawley rats using tail bleeding assay and compared with commercially available hemostatic sponge. Other important parameters like (a) time taken for complete hemostasis, (b) amount of blood absorbed, (c) adherence strength of developed hemostatic dressing(s), (d) incidence of re-bleeding, and (e) survival of animals were also studied. Results Of the four test gums studied, xanthan gum (@3mg/ml of blood) and gum tragacanth (@35mg/ml of blood) were able to clot blood in least time (58.75±6.408 s and 59.00±2.082 s, respectively) and exhibited very good hemostatic potential in vitro. Except for xanthan gum, all other test gums did not exhibit any significant cytotoxicity at different time points till 24 h. In rat tail bleeding experiments, gum tragacanth sponge dressing and powder achieved hemostasis in least time (156.2±12.86 s and 76±12.55 s, respectively) and much earlier than commercially available product (333.3±38.84 s; p˂0.01). Conclusion Results indicate potential of gum tragacanth to be developed into a suitable hemostatic product.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4146
Author(s):  
Xunli Jiang ◽  
Zhiyi Huang ◽  
Xue Luo

Soft soils are usually treated to mitigate their engineering problems, such as excessive deformation, and stabilization is one of most popular treatments. Although there are many creep models to characterize the deformation behaviors of soil, there still exist demands for a balance between model accuracy and practical application. Therefore, this paper aims at developing a Mechanistic-Empirical creep model (MEC) for unsaturated soft and stabilized soils. The model considers the stress dependence and incorporates moisture sensitivity using matric suction and shear strength parameters. This formulation is intended to predict the soil creep deformation under arbitrary water content and arbitrary stress conditions. The results show that the MEC model is in good agreement with the experimental data with very high R-squared values. In addition, the model is compared with the other classical creep models for unsaturated soils. While the classical creep models require a different set of parameters when the water content is changed, the MEC model only needs one set of parameters for different stress levels and moisture conditions, which provides significant facilitation for implementation. Finally, a finite element simulation analysis of subgrade soil foundation is performed for different loading levels and moisture conditions. The MEC model is utilized to predict the creep behavior of subgrade soils. Under the same load and moisture level, the deformation of soft soil is largest, followed by lime soil and RHA–lime-stabilized soil, respectively.


Author(s):  
А.К. СТРЕЛКОВА ◽  
И.Б. КРАСИНА ◽  
К.Н. СТОРЧЕУС ◽  
Е.В. ФИЛИППОВА

Необходимость разработки безглютеновых продуктов обусловлена ростом численности людей страдающих целиакией, распространенность которой составляет 1 случай на 100–200 человек населения. Решение проблем, возникающих при производстве безглютеновых мучных кондитерских изделий, делает актуальным поиск новых видов сырья, не содержащего глютен и способного улучшать потребительские свойства изделий. В качестве источника безглютенового сырья была выбрана гречневая мука (ГМ). Получено безглютеновое печенье из ГМ в сочетании с различными гидроколлоидами – камедями акации, трагаканта, гуаровой и ксантановой, которые по отдельности добавляли в образцы ГМ в количестве 1г/100 г, и исследовано его физико-химические и сенсорные свойства в сравнении с аналогичными свойствами печенья из пшеничной муки (ПМ). Установлено, что образцы ГМ с добавкой камедей имеют более высокое содержание влаги, а печенье, полученное из смеси ГМ с камедью по разработанной нами технологии, – большую толщину, массу и сниженную прочность при разрушении по сравнению с ГМ и печеньем, изготовленным из нее. При сенсорной оценке качества изделий, проведенной по девятибалльной гедонистической шкале, установлено, что самые высокие показатели качества имеет печенье из ПМ, самые низкие – печенье, приготовленное из ГМ. Внесение камедей улучшило сенсорные показатели изделий на основе ГМ. Лучшим признан образец печенья на основе ГМ с добавлением ксантановой камеди. Таким образом, использование гидроколлоидов улучшает водосвязывающую способность муки и сенсорные показатели изделия – цвет, аромат, вкус и дает возможность получить безглютеновое печенье достаточно высокого качества, сопоставимого с качеством печенья из пшеничной муки. The need to develop gluten-free products is due to the growing number of people suffering from celiac disease, the prevalence of which is 1 case per 100–200 people of the population. Solving the problems that arise in the production of gluten-free flour confectionery products makes it relevant to search for new types of raw materials that do not contain gluten and can improve the consumer properties of products. Buckwheat flour (BF) was chosen as a source of gluten-free raw materials. Gluten-free cookies from BF were obtained in combination with various hydrocolloids-acacia, tragacanth, guar and xanthan gums, which were separately added to BF samples in the amount of 1 g/100 g, and its physical and chemical and sensory properties were studied in comparison with similar properties of wheat flour cookies (WF). The purpose of this work is to obtain gluten-free cookies from BF in combination with various hydrocolloids – acacia gum, tragacanth, guar gum and xanthan gum, which were separately added to BF in the amount of 1 g/100 g, and to study its physical, chemical and sensory properties in comparison with similar properties of cookies from WF. It was found that the samples of BF with the addition of gums have higher moisture content, and the cookies obtained from a mixture of BF with gum according to the technology developed by us – a greater thickness, weight and reduced strength at destruction compared to BF and cookies made from it. In the sensory evaluation of the quality of products conducted on a nine-point hedonistic scale, it was found that the highest quality indicators are cookies made from WF, the lowest – cookies made from BF. The introduction of gums improved the sensory performance of BF-based products. A sample of BF-based cookies with the addition of xanthan gum was recognized as the best. Thus, the use of hydrocolloids improves the water-binding ability of flour and the sensory characteristics of the product – color, aroma, taste, and makes it possible to obtain gluten-free cookies of sufficiently high quality, comparable to the quality of cookies made from wheat flour.


Author(s):  
K. Pallavi ◽  
T. Pallavi

Objective: The main aim of the present research was to develop an oral fast dissolving polymeric film (FDF) with good mechanical properties, faster disintegration and dissolution when placed on the tongue.Methods: Eletriptan hydrobromide is prescribed for the treatment of mild to a moderate migraine. The polymers selected for preparing films were Pullulan, Maltodextrin (MDX), Acacia, Sodium alginate (SA), Locust bean gum (LBG), Guar gum (GG), Xanthan gum (XG), Polyvinyl alcohol (PVA), Polyvinyl pyrrolidine (PVP), Hydroxyl propyl methyl cellulose (HPMC) E5, and HPMC E15. Twelve sets of films FN1–FN12 were prepared by solvent casting method with Pullulan and combination of Acacia, MDX, SA, LBG, GG, XG, PVA, PVP, HPMC E5 and HPMC E15. Five sets of films FS1–FS5 were prepared using synthetic polymers like PVA, PVP, HPMC E5 and HPMC E15.Results: From all the prepared polymer formulations, FN2, FN8, and FS3 were selected based on disintegration time, and drug release and amongst this three FN2 was optimised based on its disintegration time (D. T). The percent drug release of the optimised film was compared with the percent release of the pure drug.Conclusion: The optimised formulation had a D. T of 16 s and a percent drug release of 97.5% in 10 min in pH 6.8 phosphate buffer and 100.6% drug release in 10 min in 0.1N HCl.


2021 ◽  
Vol 7 (1) ◽  
pp. 49-58
Author(s):  
Mohammad Awwad

Background: Water floods have a considerable impact on roads sustainability by creating roads cracks, breaking down and holes, and failure for some other parts. The existence of good drainage system serviced the road and draining the water resulted from rain floods is crucial. These significant influences can be classified as positive or negative, low, moderate, or high. Aim and Objectives: This paper discusses the water floods and rainfall effects on roads and highways in Jordan as well as the drainage system on road sustainability and performance. The main aim of this paper is to investigate and analyse water as rainfall or floods affecting roads and highways in Jordan. The importance of this study is represented by studying and analysing the effects of rainfall and water floods on road construction and sustainability in Jordan after the latest high rain sizes of this winter and water floods, which affect the roads and highways in a good percentage. The other importance of the study is represented in offering solutions to problems caused by the environmental effects, specially floods and high rainfall rates. Methodology: all data and information about status of Jordanian roads during winter and floods are collected from real cases of about 40 main and semi-main roads in Jordan.  Results and Conclusions: A good drainage system and repair operations and maintenance generally have a positive impact on road sustainability and survival age. The effects of slopes of the road and surface of the asphalt, rainfall intensity, and water flow velocity on drainage length and drainage time and water depth are discussed here. Doi: 10.28991/cej-2021-03091636 Full Text: PDF


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2506
Author(s):  
Amanda N. Dainton ◽  
Hulya Dogan ◽  
Charles Gregory Aldrich

Hydrocolloids are commonly used in canned pet food. However, their functional effects have not been quantified in this food format. The objective was to determine the effects of select hydrocolloids on batter consistency, heat penetration, and texture of canned pet food. Treatments were added to the formula as 1% dextrose (D) and 0.5% guar gum with 0.5% of either dextrose (DG), kappa carrageenan (KCG), locust bean gum (LBG), or xanthan gum (XGG). Data were analyzed as a 1-way ANOVA with batch as a random effect and separated by Fisher’s LSD at p < 0.05. Batter consistency (distance traveled in 30 s) thickened with increasing levels of hydrocolloids (thinnest to thickest: 23.63 to 2.75 cm). The D treatment (12.08 min) accumulated greater lethality during the heating cycle compared to all others (average 9.09 min). The KCG treatment (27.00 N) was the firmest and D and DG (average 8.75 N) the softest with LBG and XGG (average 15.59 N) intermediate. Toughness was similar except D (67 N·mm) was less tough than DG (117 N·mm). The D treatment showed the greatest expressible moisture (49.91%), LBG and XGG the lowest (average 16.54%), and DG and KCG intermediate (average 25.26%). Hydrocolloids influenced heat penetration, likely due to differences in batter consistency, and affected finished product texture.


2015 ◽  
Vol 10 (3) ◽  
pp. 230-238 ◽  
Author(s):  
Vilimantas Vaičiukynas ◽  
Saulius Vaikasas ◽  
Henrikas Sivilevičius ◽  
Audrius Grinys

Good drainage is the most important design consideration for a road, both to miniaturize road maintenance costs and maximize the time the road is operational. The lack of good drainage lead to the structural damages and costly repairs. Many of roads are built in intensively drained agricultural land. The effective way to drain subgrades is reconstruction of existing agricultural drainage. The impact of cross-subsurface drainage system on water level fluctuation was measured using Plane geofiltration mathematical model, one of 3D geofiltration modelling programs. The hydraulic permeability characteristics were determined in field of Pikeliai, close to local road in Kėdainiai district, Lithuania. This object is composed of clay and loamy soils. Subsurface cross drains trenches spacing of 20 m, 30 m and 40 m were simulated. The hydraulic permeability of cross drain trenches and lateral trenches modelled was from 0.006 m/a day to 6 m/a day. The simulation of cross drains trenches showed that the most effective distance between them are 20 m. The highest water depression occurs when the permeability of cross drain trenches and lateral trenches is ~ 6 m/day, at the distance of 20 m. The water recession is 20 cm lower compared to the drainage systems without cross drains trenches. By installing cross drains trenches every 30 m, water recession is 10 cm lower when the trench permeability is about 6 m/day. When increasing the distance between the cross drains up to 40 m their influence disappears.


Sign in / Sign up

Export Citation Format

Share Document