scholarly journals The cost of mitigating greenhouse gas emissions in farms in Central Andes of Ecuador

2020 ◽  
Vol 18 (1) ◽  
pp. e0101
Author(s):  
Jhenny Cayambe ◽  
Ana Iglesias

Aim of study: Reduction of the greenhouse gas (GHG) emissions derived from food production is imperative to meet climate change mitigation targets. Sustainable mitigation strategies also combine improvements in soil fertility and structure, nutrient recycling, and the use more efficient use of water. Many of these strategies are based on agricultural know-how, with proven benefits for farmers and the environment. This paper considers measures that could contribute to emissions reduction in subsistence farming systems and evaluation of management alternatives in the Central Andes of Ecuador. We focused on potato and milk production because they represent two primary employment and income sources in the region’s rural areas and are staple foods in Latin America.Area of study: Central Andes of Ecuador: Carchi, Chimborazo, Cañar provincesMaterial and methods: Our approach to explore the cost and the effectiveness of mitigation measures combines optimisation models with participatory methods.Main results: Results show the difference of mitigation costs between regions which should be taken into account when designing of any potential support given to farmers. They also show that there is a big mitigation potential from applying the studied measures which also lead to increased soil fertility and soil structure improvements due to the increased soil organic carbon.Research highlights: This study shows that marginal abatement cost curves derived for different agro-climatic regions are helpful tools for the development of realistic regional mitigation options for the agricultural sector.

2021 ◽  
Vol 25 (1) ◽  
pp. 944-954
Author(s):  
Agita Gancone ◽  
Jelena Pubule ◽  
Dagnija Blumberga

Abstract Agriculture sector holds an essential role in Latvia’s economy and play significant role in keeping rural areas as a habitable environment (approximately 32 % of the population lives in rural areas). The agricultural sector is responsible for 28.5 % (2018) of total non-European Union Emissions Trading System (non – EU ETS) greenhouse gas (GHG) emissions in Latvia. The largest part of emissions is related to agricultural soils (59.3 %) and enteric fermentation 32.6 % (mainly dairy and beef cattle). The GHG emissions trend of recent years shows a gradual and steady increase in GHG emissions for example between 2005 and 2018 +12.5 % and during the period 2013–2018 emissions increased by 2.12 %. According to Latvia’s National Energy and Climate Plan 2021–2030 (NECP), total GHG emissions in the agricultural sector are expected to increase in the period from 2020 to 2030, mainly in the enteric fermentation and agricultural soil categories. To achieve determined targets for Latvia’s non-EU ETS sector in 2030 and be on track to reach climate neutrality in 2050, the agricultural sector has to contribute to GHG emission mitigation. For the agricultural sector, improved food security and climate smart activities will be necessary to achieve GHG emission reduction. Existing policies and measures (WEM) as well as those which are included in the NECP as additional measures (WAM) were used to assess more suitable measures to move on climate smart agriculture (CSA), that could help to decrease GHG emissions at the farm and state level as well as is expected to contribute towards achieving the commitments in the plan. To achieve the aim of the study, a combination of the Delphi method together with multi-criteria analysis (MCA) is utilized to find a set of top GHG mitigation measures in the future. Results show that, in the future, the measure support the development of innovative technologies and solutions to promote resource efficiency in agriculture is essential to move on climate smart agriculture.


2008 ◽  
Vol 88 (5) ◽  
pp. 629-639 ◽  
Author(s):  
J A Dyer ◽  
X. P. C. Vergé ◽  
R L Desjardins ◽  
D. Worth

Estimates of the efficiency of mitigation measures on reducing greenhouse gas (GHG) emissions from the agricultural sector are required. In this paper, recently calculated dairy GHG emissions for 2001 were extrapolated back to 1981 for census years using an index. The index was verified by comparing it with estimates based on the Intergovernmental Panel on Climate Change (IPCC) methodology for 1991. The index agreed with the IPCC estimates within 1% for methane and 4% for nitrous oxide on a national scale with no region having a difference of more than 5% for methane. For nitrous oxide, all regions were within 10%, except British Columbia, where the index was 19% too high. The index indicates that GHG emissions from primary milk production within the Canadian dairy industry have decreased by about 49% since 1981, mainly due to a 57% reduction in the dairy cow population during that period. The GHG emissions per kilogram of milk decreased by 35%, that is from 1.22 kg CO2eq kg-1 milk to 0.91 kg CO2eq kg-1 milk. Because this study took into account the energy-related CO2 emissions from all the major farm inputs (fertilizer and fossil fuel), there was little risk of hidden GHG emissions in the emission intensity calculation. This study demonstrates that where lack of input data restricts historical application of simulation models, a semi-empirical index approach can yield valuable results. Key words: Greenhouse gas, dairy industry, index, intensity indicator


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jiang Lin ◽  
Nina Khanna ◽  
Xu Liu ◽  
Fei Teng ◽  
Xin Wang

Abstract Forecasts indicate that China’s non-carbon dioxide (CO2) greenhouse gas (GHG) emissions will increase rapidly from the 2014 baseline of 2 billion metric tons of CO2 equivalent (CO2e). Previous studies of the potential for mitigating non-CO2 GHG emissions in China have focused on timeframes through only 2030, or only on certain sectors or gases. This study uses a novel bottom-up end-use model to estimate mitigation of China’s non-CO2 GHGs under a Mitigation Scenario whereby today’s cost-effective and technologically feasible CO2 and non-CO2 mitigation measures are deployed through 2050. The study determines that future non-CO2 GHG emissions are driven largely by industrial and agricultural sources and that China could reduce those emissions by 47% by 2050 while enabling total GHG emissions to peak by 2023. Except for F-gas mitigation, few national or sectoral policies have focused on reducing non-CO2 GHGs. Policy, market, and other institutional support are needed to realize the cost-effective mitigation potentials identified in this study.


Land ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 130
Author(s):  
Kerstin Jantke ◽  
Martina J. Hartmann ◽  
Livia Rasche ◽  
Benjamin Blanz ◽  
Uwe A. Schneider

Climate mitigation targets must involve the agricultural sector, which contributes 10%–14% of global anthropogenic greenhouse gas (GHG) emissions. To evaluate options for implementing mitigation measures in the agricultural sector, farmers’ knowledge, positions, and attitudes towards agricultural GHG emissions, their accounting, and reduction need to be understood. Using an online survey, we asked 254 German farmers about their motivation to reduce GHG emissions and their acceptance of possible regulation schemes. We examined differences between relevant farming sectors, i.e., conventional versus organic and livestock keeping versus crop-cultivating farms. Results show that German farmers are aware of climatic changes and feel a general commitment to reducing GHG emissions but lack sufficient information. We identified agricultural magazines as the most effective tool for disseminating relevant knowledge. German farmers would feel motivated to adopt climate-friendly farming styles if products were labeled accordingly and if they received subsidies and public acknowledgment for their effort. As long as there is no regulation of agricultural GHGs through taxes or subsidies, personal motivation is yet the strongest motivation for voluntary emission reduction. Our findings are timely for the further development of strategies and instruments that reduce agricultural GHG emission and account for the farmers’ views. The dataset is available for further investigations.


2017 ◽  
Vol 30 (1) ◽  
pp. 191-214 ◽  
Author(s):  
Meryl Jagarnath ◽  
Tirusha Thambiran

Because current emissions accounting approaches focus on an entire city, cities are often considered to be large emitters of greenhouse gas (GHG) emissions, with no attention to the variation within them. This makes it more difficult to identify climate change mitigation strategies that can simultaneously reduce emissions and address place-specific development challenges. In response to this gap, a bottom-up emissions inventory study was undertaken to identify high emission zones and development goals for the Durban metropolitan area (eThekwini Municipality). The study is the first attempt at creating a spatially disaggregated emissions inventory for key sectors in Durban. The results indicate that particular groups and economic activities are responsible for more emissions, and socio-spatial development and emission inequalities are found both within the city and within the high emission zone. This is valuable information for the municipality in tailoring mitigation efforts to reduce emissions and address development gaps for low-carbon spatial planning whilst contributing to objectives for social justice.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Philip J. Ball

Abstract A review of conventional, unconventional, and advanced geothermal technologies highlights just how diverse and multi-faceted the geothermal industry has become, harnessing temperatures from 7 °C to greater than 350 °C. The cost of reducing greenhouse emissions is examined in scenarios where conventional coal or combined-cycle gas turbine (CCGT) power plants are abated. In the absence of a US policy on a carbon tax, the marginal abatement cost potential of these technologies is examined within the context of the social cost of carbon (SCC). The analysis highlights that existing geothermal heat and power technologies and emerging advanced closed-loop applications could deliver substantial cost-efficient baseload energy, leading to the long-term decarbonization. When considering an SCC of $25, in a 2025 development scenario, geothermal technologies ideally need to operate with full life cycle assessment (FLCA) emissions, lower than 50 kg(CO2)/MWh, and aim to be within the cost range of $30−60/MWh. At these costs and emissions, geothermal can provide a cost-competitive low-carbon, flexible, baseload energy that could replace existing coal and CCGT providing a significant long-term reduction in greenhouse gas (GHG) emissions. This study confirms that geothermally derived heat and power would be well positioned within a diverse low-carbon energy portfolio. The analysis presented here suggests that policy and regulatory bodies should, if serious about lowering carbon emissions from the current energy infrastructure, consider increasing incentives for geothermal energy development.


2020 ◽  
Vol 12 (6) ◽  
pp. 2506
Author(s):  
Klaus Mittenzwei

This paper studies the hypothesis that farm structure and the regional distribution of agricultural activity themselves have a significant impact on greenhouse gas (GHG) emissions from agriculture. Applying a dynamic model for the Norwegian agricultural sector covering the entire farm population, the model results support the hypothesis. Even without mitigation options, GHG emissions decline by 1.4 per cent if agriculture becomes regionally concentrated and increase by 1.5 per cent if a policy that favors a small-scale farm structure is put in place. Adding a carbon tax to a policy that leads to regional concentration, may help to reconcile competing policy objectives. A switch from animal production to crop production, and an extensification of animal production keeps a large resource base across the country while cutting GHG emissions.


2009 ◽  
Vol 55 (No. 8) ◽  
pp. 311-319 ◽  
Author(s):  
Z. Exnerová ◽  
E. Cienciala

As a part of its obligations under the Climate Convention, the Czech Republic must annually estimate and report its anthropogenic emissions of greenhouse gases. This also applies for the sector of agriculture, which is one of the greatest producers of methane and nitrous oxide emissions. This paper presents the approaches applied to estimate emissions in agricultural sector during the period 1990–2006. It describes the origin and sources of emissions, applied methodology, parameters and emission estimates for the sector of agriculture in the country. The total greenhouse gas emissions reached 7644 Gg CO<sub>2</sub> eq. in 2006. About 59% (4479 Gg CO<sub>2</sub> eq.) of these emissions has originated from agricultural soils. This quantity ranks agriculture as the third largest sector in the Czech Republic representing 5.3% of the total greenhouse gas emissions (GHG). The emissions under the Czech conditions consist mainly of emissions from enteric fermentation, manure management and agricultural soils. During the period 1990–2006, GHG emissions from agriculture decreased by 50%, which was linked to reduced cattle population and amount of applied fertilizers. The study concludes that the GHG emissions in the sector of agriculture remain significant and their proper assessment is required for sound climate change adaptation and mitigation policies.


2018 ◽  
Vol 58 (6) ◽  
pp. 980 ◽  
Author(s):  
Richard Rawnsley ◽  
Robyn A. Dynes ◽  
Karen M. Christie ◽  
Matthew Tom Harrison ◽  
Natalie A. Doran-Browne ◽  
...  

Recognition is increasingly given to the need of improving agricultural production and efficiency to meet growing global food demand, while minimising environmental impacts. Livestock forms an important component of global food production and is a significant contributor to anthropogenic greenhouse-gas (GHG) emissions. As such, livestock production systems (LPS) are coming under increasing pressure to lower their emissions. In developed countries, LPS have been gradually reducing their emissions per unit of product (emissions intensity; EI) over time through improvements in production efficiency. However, the global challenge of reducing net emissions (NE) from livestock requires that the rate of decline in EI surpasses the productivity increases required to satisfy global food demand. Mechanistic and dynamic whole farm-system models can be used to estimate farm-gate GHG emissions and to quantify the likely changes in farm NE, EI, farm productivity and farm profitability as a result of applying various mitigation strategies. Such models are also used to understand the complex interactions at the farm-system level and to account for how component mitigation strategies perform within the complexity of these interactions, which is often overlooked when GHG mitigation research is performed only at the component level. The results of such analyses can be used in extension activities and to encourage adoption, increase awareness and in assisting policy makers. The present paper reviews how whole farm-system modelling has been used to assess GHG mitigation strategies, and the importance of understanding metrics and allocation approaches when assessing GHG emissions from LPS.


2020 ◽  
Vol 24 (1) ◽  
pp. 137
Author(s):  
Fernando Vinícius da Rocha ◽  
Abner Matheus João ◽  
Everton Lima Costa ◽  
José Vicente Caixeta Filho

Este trabalho busca analisar o quão determinante seriam as políticas precificação de emissões de gases do efeito estufa (GEE) na competividade logística agroindustrial no Brasil. Para isso, considerou dois projetos de infraestrutura logística em fase de pré-concessão, Ferrogrão e Ferrovia Paraense, visando o escoamento da produção de grãos no estado do Mato Grosso. Assim, determinando as áreas de influência não apenas por meio dos custos de transporte, bem como com a incorporação dos custos provenientes das emissões, as soluções logísticas intermodais, considerando os dois projetos, indicam que essas são as que apresentam potencial maior área de influência para captação das menores emissões GEE. Cenário esse corroborado, visto que, consideradas elevações no custo por tonelada de CO2 emitido, o escoamento por meio da Ferrogrão e da Ferrovia Paraense se tornariam maiores.Palavras-chave: Precificação. Emissões. Agronegócio. Logística. Grãos.GHG PRICING POLICY: economic and environmental impacts on grain agrologistics in Mato GrossoAbstractThis paper analyzes how crucial the pricing policies of greenhouse gas (GHG) emissions would be in the agroindustrial logistic competitiveness in Brazil. Two transportation infrastructure projects are analyzed, Ferrogrão and Pará Railway. By determining the areas of influence not only through transportation costs, as well as the incorporation of emissions costs, intermodal logistics solutions, considering the two projects, indicate that these are the ones with the largest potential area of influence to capture the lowest GHG emissions. This is corroborated as, considering increases in the cost per ton of CO2 emitted, the flow through Ferrogrão and Pará Railway would become larger.Keywords: Pricing. Emissions. Agribusiness. Logistics. Grains.


Sign in / Sign up

Export Citation Format

Share Document