scholarly journals The PICOHIDRO POWER ELECTRIC PLANT DESIGN IS EQUIPPED BY ELECTRONIC CONTROL SYSTEM (ECU)

2021 ◽  
Vol 2 (Oktober) ◽  
pp. 77-85
Author(s):  
Budi Prasetyo ◽  
Dedy Pradigdo ◽  
Indra Diantoro

Abstrak: There are many streams of water or rivers around us which are felt to be underutilized effectively. Therefore, it is necessary to develop Pico hydro technology as an alternative to power generation. Pico hydro usually produces low wattage so that it is not optimal for people to use in their daily lives. Therefore, the design of a power plant is designed that is equipped with an ECU control system as a water source control system that can produce greater electrical energy. The research method used is a pure experimental method to find out the results obtained are 300 watts by calculating the pressure sent to the ECU system. Technically, Pico hydro has several components in it, such as waterwheel water as a turbine, steering blade and generator. Pico hydro can be used as an alternative energy that utilizes the flow of water which can be used as an energy source. The Pico hydro generator used in this study is the Brantas River in Pendem Village, Karangploso District, Batu Malang City. With adequate water flow, using a Francis type water turbine, and using a 200Watt generator and controlled by the ECU system. From the test results obtained potential energy of 5880 (Nm), compressive energy of 2.107 (N/m2) pipe flow velocity (v) 7.668 (m/s) energy contained in water 45.67 (watts) Francis turbine efficiency 31.97% generator efficiency is 28.77% and the maximum power produced by a 200 watt generator is 29Volt

2021 ◽  
Vol 4 (2) ◽  
pp. 22-26
Author(s):  
Hadi Santoso ◽  
Eris Santoso ◽  
Ruslim Ruslim

The supply of electrical energy in Tarakan City, North Kalimantan, still relies on diesel power which uses a limited number of petroleum energy sources. There is a need for research related to renewable energy sources that have the potential to become alternative energy for the people of Tarakan City. Water is an energy source that has great potential to generate electricity. The energy source that should be taken into account is micro-hydro which can be used as a Micro-hydro Power Plant (PLTMH). A survey of micro-hydro sources in Tarakan City, precisely in the Karungan area, East Mamburungan Village, has been carried out with the direct measurement method of water discharge and the relationship with the power generated. The result shows the water source has a discharge 0.00034 m3/ s, the water velocity of 0.035 m/s and generates power only up to 1.1 watts. Based on the power obtained, the water source in this place cannot be used as a source of micro-hydro energy, but has the potential as a source of pico-hydro energy.


2021 ◽  
Vol 14 (2) ◽  
pp. 99-105
Author(s):  
Ma'mun Abdul Karim ◽  
Jojo Sumarjo ◽  
Najmudin Fauji

The screw type water turbine is one type of water turbine that has the potential to generate electricity on a small scale that is environmentally friendly, where this screw type water turbine is very suitable for rivers and irrigation flows in the territory of Indonesia because the use or operation of this turbine only requires low turbine head, looking at the potential for irrigation river water flow with a discharge range of 0.01-0.1 m3/s located in the lowlands in a Karawang district, it is possible to install or apply this screw type water turbine. In this study aims to be able to utilize the source of irrigation flow so that it can be converted into a source of electrical energy that can be utilized by local residents and for lighting on roads that are still poorly lit. In the process of designing a screw type water turbine, mechanical calculations are carried out to determine thedimensions of the turbine blades, turbine shaft, transmission systems such as pulleys and belts, as well as the power that can be generated by the turbine, with a relative head between 0.5 meters, 0.75 meters, and 0.9 meters and determine the correct components. The results of this calculation are obtained in the form of output power from each different head height for head 0.5, the power obtained is 220.89795 watts, for the 0.75 m head, the power is 394.29519 watts, and for the height 0.9, the output power is 356.13926 watts, the results of the design will then be made and will be realized.


2021 ◽  
Author(s):  
Marijo Šundrica ◽  
Mario Vašak ◽  
Joseph Maroušek ◽  
Tim Bieringer

Abstract Production of green electrical energy and green natural gas are the main goals of zero-carbon emission policy. Power to Gas plants (P2G) can be used to overcome difficulties with increase in intermittent renewable energy production, gas shortages and organic waste management. In this paper, a design, a model, and a control system for a Power to Gas plant is proposed. To achieve a high performance P2G plant, its design is based on biochar gasification and biological methanation processes. With the given mathematical models of electrolysis, gasification and methanation, calculation of needed feedstock and energy consumption as well as calculation of produced methane becomes easy obtainable. Proposed control system enables to precisely follow frequent operation change requests due to dynamical conditions in leaned electricity or gas grids. Simulation study of the automated plant operation using Matlab/Simulink has been done. This research gives all prerequisites for optimal sizing and planning of the P2G plant operation in dynamic technical and economic conditions.


2017 ◽  
Vol 3 (2) ◽  
pp. 88
Author(s):  
Suci Rahmatia ◽  
Marsah Zaysi Makhudzia

<p><em>Abstrak <strong>- </strong></em><strong>Transformator adalah peralatan listrik yang sangat vital dalam proses pembangkitan maupun transmisi energi listrik karena transformator dapat menaikkan atau menurunkan tegangan. Pada proses menaikkan dan menurunkan tegangan biasanya sering timbul panas akibat rugi – rugi tembaga pada inti besi dan kumparannya sehingga pada kondisi overload akan menimbulkan pemanasan yang berlebih dan dapat mempengaruhi kinerja transformator. Oleh karena itu dibuat sistem kontrol temperatur pada transformer yang dapat mengontrol temperatur di dalam transformator saat bekerja pada kondisi overload, sehigga transformatornya tidak terbakar. Dial thermometer digunakan sebagai alat yang mengontrol temperatur transformator pada sistem kontrol temperatur. Agar mendapatkan sistem kontrol yang optimal, maka setting temperatur pada dial thermometer di sesuaikan dengan temperatur maksimal tranformator dapat bekerja. Sehingga pada saat temperatur tertentu dial thermometer dapat memberikan sinyal untuk membunyikan alarm dan mengaktifkan kontrol kipas sehingga kipas dapat bekerja menurunkan temperatur transformator.<em></em></strong></p><p><strong><em> </em></strong></p><p><strong><em>Kata kunci - </em></strong><em>transformator, rugi – rugi tembaga, temperatur, sistem kontrol, dial thermometer<strong>.</strong></em></p><p><strong><em> </em></strong></p><p><em>Abstract <strong>- </strong></em><strong>A transformer is an electrical device that is vital in the generation and transmission of electrical energy because the transformer can raise (stepping up) or lower (stepping down) the voltage. In the process of raising and lowering the voltage is usually often caused heat loss of copper in iron core and coil so that the overload condition will cause excessive warming and can affect the performance of the transformer. Therefore, a temperature control system on the transformer can control the temperature inside the transformer while working under overload conditions, so the transformer is not burned. Dial thermometer is used as a device that controls the temperature of the transformer in the temperature control system. In order to obtain an optimal control system, the temperature setting on the dial thermometer adjusted to the maximum transformer temperature can work. So that when a certain temperature dial thermometer can provide a signal to sound the alarm and activate the fan control so that the fan can work down the transformer temperature.</strong></p><p><strong> </strong></p><p><strong><em>Keywords -  </em></strong><em>transformator, loss of copper, themperature, control system, dial thermometer<strong></strong></em></p>


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 142
Author(s):  
Jianfei Tang ◽  
Tianle Liu ◽  
Sijia Miao ◽  
Yuljae Cho

In recent years, we have experienced extreme climate changes due to the global warming, continuously impacting and changing our daily lives. To build a sustainable environment and society, various energy technologies have been developed and introduced. Among them, energy harvesting, converting ambient environmental energy into electrical energy, has emerged as one of the promising technologies for a variety of energy applications. In particular, a photo (electro) catalytic water splitting system, coupled with emerging energy harvesting technology, has demonstrated high device performance, demonstrating its great social impact for the development of the new water splitting system. In this review article, we introduce and discuss in detail the emerging energy-harvesting technology for photo (electro) catalytic water splitting applications. The article includes fundamentals of photocatalytic and electrocatalytic water splitting and water splitting applications coupled with the emerging energy-harvesting technologies using piezoelectric, piezo-phototronic, pyroelectric, triboelectric, and photovoltaic effects. We comprehensively deal with different mechanisms in water splitting processes with respect to the energy harvesting processes and their effect on the water splitting systems. Lastly, new opportunities in energy harvesting-assisted water splitting are introduced together with future research directions that need to be investigated for further development of new types of water splitting systems.


MRS Bulletin ◽  
1999 ◽  
Vol 24 (11) ◽  
pp. 40-44 ◽  
Author(s):  
R.B. Schwarz

Magnesium can reversibly store about 7.7 wt% hydrogen, equivalent to more than twice the density of liquid hydrogen. This high storage capacity, coupled with a low price, suggests that magnesium and magnesium alloys could be advantageous for use in battery electrodes and gaseous-hydrogen storage systems. The use of a hydrogen-storage medium based on magnesium, combined with a fuel cell to convert the hydrogen into electrical energy, is an attractive proposition for a clean transportation system. However, the advent of such a system will require further research into magnesium-based alloys that form less stable hydrides and proton-conducting membranes that can raise the operating temperature of the current fuel cells.Following the U.S. oil crisis of 1974, research into alternative energy-storage and distribution systems was vigorously pursued. The controlled oxidation of hydrogen to form water was proposed as a clean energy system, creating a need for light and safe hydrogen-storage media. Extensive research was done on inter-metallic alloys, which can store hydrogen at densities of about 1500 cm3-H2 gas/ cm3-hydride, higher than the storage density achieved in liquid hydrogen (784 cm3/cm3 at –273°C) or in pressure tanks (˜200 cm3/cm3 at 200 atm). The interest in metal hydrides accelerated following the development of portable electronic devices (video cameras, cellular phones, laptop computers, tools, etc.), which created a consumer market for compact, rechargeable batteries. Initially, nickel-cadmium batteries fulfilled this need, but their relatively low energy density and the toxicity of cadmium helped to drive the development of higher-energy-density, less toxic, rechargeable batteries.


2021 ◽  
Vol 14 (3) ◽  
pp. 229-246
Author(s):  
Yasuyuki Nishi ◽  
Daichi Sukemori ◽  
Terumi Inagaki
Keyword(s):  

Author(s):  
Zhe Dong ◽  
Yifei Pan ◽  
Miao Liu ◽  
Xiaojin Huang

The nuclear heating reactor (NHR) is a typical integral pressurized water reactor (iPWR) developed by the institute of nuclear and new energy technology (INET) of Tsinghua University, which has the safety advanced features such as the primary circuit integral arrangement, full-range natural circulation, self-pressurization. Power-level control is crucial for the operational stability and efficiency of the NHR, and the dynamic modeling is a basis for control system design and verification. From the conservation laws of mass, energy and momentum, a lumped-parameter dynamical model is proposed for the nuclear steam supply system (NSSS) based on the 200MWth nuclear heating reactor II (NHR200-II). The steady-state model validation is given by the comparing the parameter values of this model and that for plant design. Then, both the open-loop responses under the disturbances of reactivity and coolant flowrates as well as the closed-loop responses under the case of power ramp are given, where the rationality of the responses are analyzed from the viewpoint of plant physics and thermal-hydraulics. This model can be utilized for not only the control system design but also the development of a real-time simulator for the hardware-in-loop control system verification.


Author(s):  
Tomoki Ikoma ◽  
Shintaro Fujio ◽  
Koichi Masuda ◽  
Chang-Kyu Rheem ◽  
Hisaaki Maeda

This paper describes the possibility of an improvement of torque performance and hydrodynamic forces on a vertical axis type water turbine, used for marine current generating system. The water turbine analyzed here is based on a Darrieus turbine with vertical blades. We considered possibilities of controlling the angle of attack of blades in order to improve the starting performance and to reduce energy loss during the rotation of the turbine. We used blade-element/ momentum theory in order to investigate the variations appearing in torque performance when the angle of attack were controlled. We also proved the validity of our predictions of hydrodynamic forces on the blade and the turbine, made through CFD calculation, by comparing them with the results of corresponding model tests in a current channel. In the corresponding model test we investigated not only the hydrodynamic forces on the turbine with three fixed blades, but also the inline force and the cross-flow force on the rotating turbine with three blades. Regarding the cyclic pitching of turbine blades, results suggest that significant increase in average turbine torque is possible.


Sign in / Sign up

Export Citation Format

Share Document