2D seismic numerical analysis of segmental tunnel lining behaviour

Author(s):  
Ngoc Anh Do ◽  
Daniel Dias ◽  
Pierpaolo Oreste

Segmental tunnel linings are now often used for seismic areas in many countries. Some prescriptions and guidelines specifically address the issue of seismic design. Unfortunately, the behaviour of segmental tunnel lining under seismic loads is still somewhat unclear. The influence of segment joints on tunnel lining behaviour during seismic loading has in fact not been quantitatively estimated in the literature. This paper presents a numerical study in order to investigate the performance of segmental tunnel lining under seismic excitation. Analyses have been carried out using a two-dimensional finite difference element model. The seismic signal obtained from an earthquake in Nice has been adopted as input. The numerical results show that a segmental lining can perform better than a continuous lining during an earthquake. The effect of plasticity of the soil constitutive model on the tunnel lining has also been highlighted. The results have indicated that an elastic analysis is not sufficient to determine the seismic induced response of a soil-tunnel system. Moreover, comparative results have pointed out that equivalent static solutions could result in smaller structural lining forces than those of a true dynamic analysis.

Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 422-445
Author(s):  
Md Riasat Azim ◽  
Mustafa Gül

Railway bridges are an integral part of any railway communication network. As more and more railway bridges are showing signs of deterioration due to various natural and artificial causes, it is becoming increasingly imperative to develop effective health monitoring strategies specifically tailored to railway bridges. This paper presents a new damage detection framework for element level damage identification, for railway truss bridges, that combines the analysis of acceleration and strain responses. For this research, operational acceleration and strain time-history responses are obtained in response to the passage of trains. The acceleration response is analyzed through a sensor-clustering-based time-series analysis method and damage features are investigated in terms of structural nodes from the truss bridge. The strain data is analyzed through principal component analysis and provides information on damage from instrumented truss elements. A new damage index is developed by formulating a strategy to combine the damage features obtained individually from both acceleration and strain analysis. The proposed method is validated through a numerical study by utilizing a finite element model of a railway truss bridge. It is shown that while both methods individually can provide information on damage location, and severity, the new framework helps to provide substantially improved damage localization and can overcome the limitations of individual analysis.


2017 ◽  
Vol 09 (01) ◽  
pp. 1750014 ◽  
Author(s):  
Xingguo Li ◽  
Bingbing An ◽  
Dongsheng Zhang

Interfacial behavior in the microstructure and the plastic deformation in the protein matrix influence the overall mechanical properties of biological hard tissues. A cohesive finite element model has been developed to investigate the inelastic mechanical properties of bone-like biocomposites consisting of hard mineral crystals embedded in soft biopolymer matrix. In this study, the complex interaction between plastic dissipation in the matrix and bonding properties of the interface between minerals and matrix is revealed, and the effect of such interaction on the toughening of bone-like biocomposites is identified. For the case of strong and intermediate interfaces, the toughness of biocomposites is controlled by the post yield behavior of biopolymer; the matrix with low strain hardening can undergo significant plastic deformation, thereby promoting enhanced fracture toughness of biocomposites. For the case of weak interfaces, the toughness of biocomposites is governed by the bonding property of the interface, and the post-yield behavior of biopolymer shows negligible effect on the toughness. The findings of this study help to direct the path for designing bioinspired materials with superior mechanical properties.


1999 ◽  
Author(s):  
S. A. Lipsey ◽  
Y. W. Kwon

Abstract Damage reduces the flexural stiffness of a structure, thereby altering its dynamic response, specifically the natural frequency, damping values, and the mode shapes associated with each natural frequency. Considerable effort has been put into obtaining a correlation between the changes in these parameters and the location and amount of the damage in beam structures. Most numerical research employed elements with reduced beam dimensions or material properties such as modulus of elasticity to simulate damage in the beam. This approach to damage simulation neglects the non-linear effect that a crack has on the different modes of vibration and their corresponding natural frequencies. In this paper, finite element modeling techniques are utilized to directly represent an embedded crack. The results of the dynamic analysis are then compared to the results of the dynamic analysis of the reduced modulus finite element model. Different modal parameters including both mode shape displacement and mode shape curvature are investigated to determine the most sensitive indicator of damage and its location.


2004 ◽  
Vol 26 (1) ◽  
pp. 1-10
Author(s):  
Nguyen Dong Anh ◽  
Nguyen Chi Sang

The design of active TMD for multi-degree-of-freedom systems subjected to second order coloured noise excitation is considered using the linear quadratic optimal theory. A detailed numerical study is carried out for a 2-DOF system. It is shown that the effectiveness of active TMD is better than the one of passive TMD.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1470
Author(s):  
Omid Rouhi ◽  
Sajad Razavi Bazaz ◽  
Hamid Niazmand ◽  
Fateme Mirakhorli ◽  
Sima Mas-hafi ◽  
...  

Mixing at the microscale is of great importance for various applications ranging from biological and chemical synthesis to drug delivery. Among the numerous types of micromixers that have been developed, planar passive spiral micromixers have gained considerable interest due to their ease of fabrication and integration into complex miniaturized systems. However, less attention has been paid to non-planar spiral micromixers with various cross-sections and the effects of these cross-sections on the total performance of the micromixer. Here, mixing performance in a spiral micromixer with different channel cross-sections is evaluated experimentally and numerically in the Re range of 0.001 to 50. The accuracy of the 3D-finite element model was first verified at different flow rates by tracking the mixing index across the loops, which were directly proportional to the spiral radius and were hence also proportional to the Dean flow. It is shown that higher flow rates induce stronger vortices compared to lower flow rates; thus, fewer loops are required for efficient mixing. The numerical study revealed that a large-angle outward trapezoidal cross-section provides the highest mixing performance, reaching efficiencies of up to 95%. Moreover, the velocity/vorticity along the channel length was analyzed and discussed to evaluate channel mixing performance. A relatively low pressure drop (<130 kPa) makes these passive spiral micromixers ideal candidates for various lab-on-chip applications.


1996 ◽  
Vol 39 (3) ◽  
Author(s):  
F. Fanucci ◽  
A. Megna ◽  
S. Santini ◽  
F. Vetrano

In the framework of a cylindrical symmetry model for convective motions in the asthenosphere, a new profile for the viscosity coefficient depending on depth is suggested here. The numerical elaboration of the above mentioned model leads to interesting results which fit well with experimental observations. In particular these continuously varying viscosity solutions probably describe the convective motions within the Earth better than simple constant viscosity solutions. Consequently the temperature values seem to be a realistic representation of the possible thermal behaviour in the upper mantle.


2021 ◽  
Author(s):  
Mohi U. Rahamat Ullah

Targeted energy transfer (TET) refers to the spatial transfer of energy between a primary structure of interest and isolated oscillators called the energy sink (ES). In this work, the primary structure of interest is a slender beam modeled by the Euler-Bernoulli theory, and the ES is a single-degree-of-freedom oscillator with either linear or cubic nonlinear stiffness property. The objective of this study is to characterize the TET and the effectiveness of ES under impact and periodic excitations. By using the scientific computation package, MATLAB, numerical simulations are carried out based on excitations of various strength and locations. Both time and frequency domain characterizations are used. For the impact excitation, the ES with the cubic nonlinear stiffness property is more superior to the linear oscillator in that larger percentage of the impact energy can be dissipated there. The main energy transfer was found to be due to a 3- to-1 frequency coupling between the first bending mode and the ES. For the periodic excitation, however, both linear and nonlinear ES exhibit generally poorer performance than the case with the impact excitation. Future works should focus on the frequency-energy relationship of the periodic solution of the underlying Hamiltonian, as well as using finite element model to verify the simulation results.


1995 ◽  
Vol 22 (1) ◽  
pp. 55-71
Author(s):  
Y. Ouellet ◽  
A. Khelifa ◽  
J.-F. Bellemare

A numerical study based on a two-dimensional finite element model has been conducted to analyze flow conditions associated with different possible designs for the reopening of Havre aux Basques lagoon, located in Îles de la Madeleine, in the middle of the Gulf of St. Lawrence. More specifically, the study has been done to better define the depth and geometry of the future channel as well as its orientation with regard to tidal flows within the inlet and the lagoon. Results obtained from the model have been compared and analyzed to put forward some recommendations about choice of a design insuring the stability of the inlet with tidal flows. Key words: numerical model, finite element, lagoon, reopening, Havre aux Basques, Îles de la Madeleine.


2008 ◽  
Vol 2008 ◽  
pp. 1-10 ◽  
Author(s):  
Natasha Vukovic ◽  
Neil G. R. Broderick ◽  
Francesco Poletti

This paper presents a numerical study of parabolic pulse generation in tapered microstructured optical fibres (MOFs). Based on our results and the algorithms presented, one can determine the linear taper profile (starting and finishing pitch values and taper length) needed to achieve parabolic pulse shaping of an initial Gaussian pulse shape with different widths and powers. We quantify the evolution of the parabolic pulse using the misfit parameter and show that it is possible to reach values significantly better than those obtained by a step index fibre.


2019 ◽  
Vol 295 ◽  
pp. 03008
Author(s):  
Rim Trad ◽  
Hussein Mroueh ◽  
Hanbing Bian ◽  
Fabrice Cormery

This paper presents a numerical study that aims to compare the behavior of the segmental tunnel lining using the direct, indirect and experimental methods. This model is based on a practical case applied in university of Tongji: a project of water conveyance tunnel. A reduction in the bending moment and increasing of the displacement in the tunnel lining is showed in numerical results, when taking into account the effect of the joints. It has been shown that the number of joints in the tunnel-lining structure highly affects the results in terms internal forces and displacements. Furthermore, the internal forces obtained by the continuous method are high compared to the other methods when the effects on segmental joints on tunnel lining behaviour are usually considered. Additionally, the bending moment of the direct method with behaviour of rotation spring linear and experimental method is comparable.


Sign in / Sign up

Export Citation Format

Share Document