scholarly journals The Relationship Between the Possibility of a Hidden Variable in Time, Possible Photon Mass, Particle's Energy, Momentum and Special Relativity

2016 ◽  
Vol 8 (6) ◽  
pp. 13
Author(s):  
Eyal Brodet

In this paper we will discuss the relationship between a possible hidden variable in time, f_r, and possible photon mass, particle energy, momentum and special relativity. One of the implications of the possibility of a hidden variable in time that may explains the origin of unstable particle decay time distributions, is the possible existence of f_r for stable particle such as photons. It will be discussed, that f_r may be linked to the photons spin and wave function, which may lead to the conclusion that the photon has a rest mass. More specifically, it will be argued that in order to explain the photon's large energy range, the photon may have a set of masses. Following the above, a correction to the energy and momentum's expressions given by special relativity will be presented. Possible experimental ways to test the above will be discussed.

2017 ◽  
Vol 9 (2) ◽  
pp. 65
Author(s):  
Eyal Brodet

In this paper we reconsider the conventional expressions given by special relativity to the energy and momentum of a particle. In the current framework, the particle's energy and momentum are computed using the particle's rest mass, M and rest mass time, t_m=h/M c^2  where t_m has the same time unit as conventionally used for the light velocity c. Therefore it is currently assumed that this definition of time describes the total kinetic and mass energy of a particle as given by special relativity. In this paper we will reexamine the above assumption and suggest describing the particle's energy as a function of its own particular decay time and not with respect to its rest mass time unit. Moreover we will argue that this rest mass time unit currently used is in fact the minimum time unit defined for a particle and that the particle may have more energy stored with in it. Experimental ways to search for this extra energy stored in particles such as electrons and photons are presented.


2003 ◽  
Vol 308 (5-6) ◽  
pp. 323-328 ◽  
Author(s):  
Spencer R. Klein ◽  
Joakim Nystrand

2020 ◽  
Vol 25 (10) ◽  
pp. 1763-1777
Author(s):  
James M Hill

The existence of the so-called ‘dark’ issues of mechanics implies that our present accounting for mass and energy is incorrect in terms of applicability on a cosmological scale, and the question arises as to where the difficulty might lie. The phenomenon of quantum entanglement indicates that systems of particles exist that individually display certain characteristics, while collectively the same characteristic is absent simply because it has cancelled out between individual particles. It may therefore be necessary to develop theoretical frameworks in which long-held conservation beliefs do not necessarily always apply. The present paper summarises the formulation described in earlier papers (Hill, JM. On the formal origin of dark energy. Z Angew Math Phys 2018; 69:133-145; Hill, JM. Some further comments on special relativity and dark energy. Z Angew Math Phys 2019; 70: 5–14; Hill, JM. Special relativity, de Broglie waves, dark energy and quantum mechanics. Z Angew Math Phys 2019; 70: 131–153.), which provides a framework that allows exceptions to the law that matter cannot be created or destroyed. In these papers, it is proposed that dark energy arises from conventional mechanical theory, neglecting the work done in the direction of time and consequently neglecting the de Broglie wave energy [Formula: see text]. These papers develop expressions for the de Broglie wave energy [Formula: see text] by making a distinction between particle energy [Formula: see text] and the total work done by the particle [Formula: see text], that which accumulates from both a spatial physical force [Formula: see text] and a force [Formula: see text] in the direction of time. In any experiment, either particles or de Broglie waves are reported, so that only one of [Formula: see text] or [Formula: see text] is physically measured, and particles appear for [Formula: see text] and de Broglie waves occur for [Formula: see text], but in either event both a measurable and an immeasurable energy exists. Conventional quantum mechanics operates under circumstances such that [Formula: see text] vanishes and [Formula: see text] becomes purely imaginary. If both [Formula: see text] and [Formula: see text] are generated as the gradient of a potential, the total particle energy is necessarily conserved in the conventional manner.


2017 ◽  
Vol 15 (05) ◽  
pp. 1750036
Author(s):  
Feng-Ming Liu ◽  
Mei-Ling Jin

The research on information quantization is important in the field of information theory. As a result, based on the quantum theory, the information was quantified from the information receiving aspect in this report. First of all, several concepts were presented, such as the InfoBar, the Amount of Information and the Power of Information as well as the algorithm of the Power of Information. Then, according to the relationship between the InfoBar and the amount of Information, the wave equation was decided based on the receiving information, meanwhile, the equation of wave function was defined as well. Finally, via the numerical simulation, the received model results as well as the sample result were basically matched. Thus, the validity of the model can be proved.


A set of matrices can be found which is isomorphic with any linear associative algebra. For the case of quaternions this was first shown by Cayley (1858), but the first formal representation was made by Peirce (1875, 1881). These were two-matrices, and the introduction of the four-row matrices of Dirac and Eddington necessitated the treatment of a wave function as a matrix of one row (as columns). Quaternions have been used by Lanczos (1929) to discuss a different form of wave equation, but here the Dirac form is discussed, the wave function being taken as a quaternion and the four-row matrices being linear functions of a quaternion. Certain advantages are claimed for quaternion methods. The absence of the distinction between outer and scalar products in the matrix notation necessitates special expedients (Eddington 1936). Every matrix is a very simple function of the fundamental Hamiltonian vectors α, β, γ , so that the result of combination is at once evident and depends only on the rules of combination of these vectors. At all stages the relationship of the different quantities to four-space is at once visible. The Dirac-Eddington matrices, the wave equation and its exact solution by Darwin, angular momentum operators, the general and Lorentz transformation, spinors and six-vectors, the current-density four-vector are treated in order to exhibit the working of this method. S and V for scalar and vector products are used. Quaternions are denoted by Clarendon type, and all vectors are in Greek letters.


1972 ◽  
Vol 50 (16) ◽  
pp. 1862-1875 ◽  
Author(s):  
A. N. Kamal

A discussion of the Glauber and Blankenbecler–Goldberger impact parameter representation for the scattering amplitude is presented with emphasis on the wave function approach. The treatment makes clear the relationship between the approximations made to derive either of the two amplitudes. Both on-energy-shell and off-energy-shell scatterings are treated. A derivation of the two representations in momentum space is presented bringing out the relationship between the approximations in a coordinate space treatment and the momentum space treatment.


2011 ◽  
Vol 29 (6) ◽  
pp. 1005-1018 ◽  
Author(s):  
Z. L. Du

Abstract. An integral response model is proposed to describe the relationship between geomagnetic activity (aa index) and solar activity (represented by sunspot number Rz): The aa at a given time t is the integral of Rz at past times (t'≤t) multiplied by an exponential decay factor of the time differences (e−(t−t')/τ), where τ is the decay time scale (~40 months). The correlation coefficient of aa with the reconstructed series based on this model (rf=0.85) is much higher than that of aa with Rz (r0=0.61). If this model is applied to each solar cycle, the correlation coefficient will be higher (rf=0.95). This model can naturally explain some phenomena related to aa and Rz, such as (i) the significant increase in the aa index (and its baseline) over the twentieth century; (ii) the longer lag times of aa to Rz at solar cycle maxima than at minima; and (iii) the variations in the correlations related to solar and Hale cycles. These results demonstrate that aa depends not only on the present Rz but also on past values. The profile of aa can be better predicted from Rz by this model than by point-point correspondence.


Quanta ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 88-100
Author(s):  
Mani L. Bhaumik

Credible reasons are presented to reveal that many of the lingering century old enigmas, surrounding the behavior of at least an individual quantum particle, can be comprehended in terms of an objectively real specific wave function. This wave function is gleaned from the single particle energy-momentum eigenstate offered by the theory of space filling universal quantum fields that is an inevitable outcome of Dirac's pioneering masterpiece. Examples of these well-known enigmas are wave particle duality, the de Broglie hypothesis, the uncertainty principle, wave function collapse, and predictions of measurement outcomes in terms of probability instead of certainty. Paul Dirac successfully incorporated special theory of relativity into quantum mechanics for the first time. This was accomplished through his ingenious use of matrices that allowed the equations of motion to maintain the necessary first order time derivative feature necessary for positive probability density. The ensuing Dirac equation for the electron led to the recognition of the mystifying quantized spin and magnetic moment as intrinsic properties in contrast to earlier ad hoc assumptions. The solution of his relativistic equation for the hydrogen atom produced results in perfect agreement with experimental data available at the time. The most far reaching prediction of the celebrated Dirac equation was the totally unexpected existence of anti-particles, culminating in the eventual development of the quantum field theory of the Standard Model that reveals the deepest secrets of the universe known to date. Quanta 2019; 8: 88–100.


Sign in / Sign up

Export Citation Format

Share Document