scholarly journals Assessing the Effectiveness of Zn Acetate and Oxide as Alternatives for Corn and Soybean Seed Treatment in Sandy and Clay Soil

2017 ◽  
Vol 9 (12) ◽  
pp. 63
Author(s):  
Matheus Gomes Nirschl ◽  
Risely Ferraz De Almeida ◽  
Eduardo Zavaschi ◽  
Lílian Angélica Moreira ◽  
Godofredo César Vitti ◽  
...  

Zinc (Zn) is the micronutrient with the lowest availability in agricultural soils, and consequently 50 % of the world’s soils present Zn deficient. To test the viability of alternative Zn sources (Zn acetate and Zn oxide) to corn and soybean seed treatments, we ran an experiment using these two alternatives at contrasting application rates (0; 0.25; 0.50; 0.76 and 1.01 g kg-1) applied to soybean and corn seeds that were subsequently sowed in sandy and clay soils. We measured: Zn accumulation, dry matter and germination, and analyzed this data using uni (LSD-test) and multivariate analysis (Principal Component Analysis, PCA). Results of the PCA showed that the sandy soil yielded higher dry matter and Zn accumulation than the clay soil. The corn provided higher dry matter while the soybean showed enhanced Zn accumulation and germination. The LSD test showed that corn presented positive Zn accumulation in response to Zn rates in both sandy and clay soil. For soybeans, this effect was only observed in sandy soil, while the clay soil presented decreases in dry matter and germination due to Zn rates. Overall, our findings reveal that both Zn acetate and Zn oxide are viable alternatives for supplying Zn to corn seed treatment in sandy and clay soil, and to soybean seed treatment in sandy soil. We suggest that more research should be undertaken to understand the response of soybean seed treatments to Zn supply, especially in clay soil.

Plant Disease ◽  
2020 ◽  
Vol 104 (5) ◽  
pp. 1421-1432 ◽  
Author(s):  
Kelsey Scott ◽  
Meredith Eyre ◽  
Dair McDuffee ◽  
Anne E. Dorrance

Phytophthora, Phytopythium, and Pythium species that cause early-season seed decay and pre-emergence and post-emergence damping off of soybean are most commonly managed with seed treatments. The phenylamide fungicides metalaxyl and mefenoxam, and ethaboxam are effective toward some but not all species. The primary objective of this study was to evaluate the efficacy of ethaboxam in fungicide mixtures and compare those with other fungicides as seed treatments to protect soybean against Pythium, Phytopythium, and Phytophthora species in both high-disease field environments and laboratory seed plate assays. The second objective was to evaluate these seed treatment mixtures on cultivars that have varying levels and combinations of resistance to these soilborne pathogens. Five of eight environments received adequate precipitation in the 14 days after planting for high levels of seedling disease development and treatment evaluations. Three environments had significantly greater stands, and three had significantly greater yield when ethaboxam was used in the seed treatment mixture compared with treatments containing metalaxyl or mefenoxam alone. Three fungicide formulations significantly reduced disease severity compared with nontreated in the seed plate assay for 17 species. However, the combination of ethaboxam plus metalaxyl in a mixture was more effective than either fungicide alone against some Pythium and Phytopythium species. Overall, our results indicate that the addition of ethaboxam to a fungicide seed treatment is effective in reducing seed rot caused by these pathogens commonly isolated from soybean in Ohio but that these effects can be masked when cultivars with resistance are planted.


1995 ◽  
Vol 75 (3) ◽  
pp. 287-291 ◽  
Author(s):  
J. A. MacLeod ◽  
Umesh C. Gupta

This study was conducted in Prince Edward Island (PEI), Canada, to determine the effect selenium (Se) treated seed on Se concentrations in soybean seed (Glycine max). Seed Se concentrations were also compared to those obtained with foliar applied Se. An application of 10 g Se ha−1 as seed treatment raised soybean Se concentrations to more than 0.5 mg kg−1. Soybeans with these Se concentrations, when included in rations at 200 kg t−1 with other low Se ingredients, would produce rations exceeding 0.1 mg Se kg−1, i.e., the minimum level required to prevent Se deficiency in livestock. Seed treatment with 100 g Se ha−1 produced soybean Se concentrations greater than 10 mg Se kg−1. When included in rations at 200 kg t−1 with other low Se feed sources, soybeans with such Se levels would produce rations in excess of the maximum tolerable dietary concentration of 2 mg Se kg−1 dry matter. Even higher soybean Se concentrations were obtained from equivalent Se rates when applied as foliar spray. In summary, treatment of soybean seed with Se has a potential for improving the Se status of rations that would be formulated with ingredients originating from Se deficient areas. Key words: Foliar applied Se, seed Se, sandy loam, Eastern Canada


2021 ◽  
Vol 42 (6) ◽  
pp. 3135-3148
Author(s):  
Ana Paula Silva Couto ◽  
◽  
Cristian Rafael Brzezinski ◽  
Julia Abati ◽  
Ronan Carlos Colombo ◽  
...  

Soybean seed treatment contributes to the maintenance of seed quality, but the effect of commercial formulations and chemical products on the effectiveness of the electrical conductivity test based on electrolyte leaching has been frequently questioned. This study aimed to verify the interference of the chemical seed treatment of two soybean cultivars on the effectiveness of the electrical conductivity test in evaluating the vigor of freshly treated and stored seeds. The experimental design was completely randomized, consisting of seven seed treatments and two evaluation periods (0 and 60 days after storage), with four replications. The used seed treatments consisted of 1) fipronil + pyraclostrobin + thiophanate-methyl, 2) imidacloprid + thiodicarb + carbendazim + thiram, 3) abamectin + thiamethoxan + fludioxonil + mefenoxam + thiabendazole, 4) carbendazim + thiram, 5) fludioxonil + mefenoxam + thiabendazole, 6) carboxin + thiram, and 7) control (no treatment). The cultivars were BRS 360 RR and BRS 284, which were analyzed separately. Germination, accelerated aging, emergence, and electrical conductivity tests were carried out. No differences were detected between the control and chemical treatments performed on seeds of the two freshly treated soybean cultivars regarding germination, accelerated aging, and emergence tests. The germination test stood out after storage with the cultivar BRS 360 RR, showing the maintenance of germination potential for seeds treated with carbendazim + thiram and the control treatment. Therefore, the chemical treatment of soybean seeds interferes with the result of the electrical conductivity test. The electrical conductivity test is effective in segregating seed lots in terms of vigor level. The electrical conductivity test correlates with the other vigor tests used to identify the reduction in the physiological seed quality with storage.


Plant Disease ◽  
2005 ◽  
Vol 89 (3) ◽  
pp. 262-268 ◽  
Author(s):  
J. K. Pataky ◽  
P. M. Michener ◽  
N. D. Freeman ◽  
J. M. Whalen ◽  
J. A. Hawk ◽  
...  

Neonicotinoid insecticides applied as seed treatments reduce the incidence of Stewart's wilt. The objectives of this study were to examine the efficacy of different rates of seed treatment insecticides to control Stewart's wilt on susceptible sweet corn hybrids and to compare the economic value of Stewart's wilt control in sweet corn grown for processing and fresh market. Clothianidin (Poncho), imidacloprid (Gaucho), and thiamethoxam (Cruiser) applied to seed at rates ranging from 0.125 to 1.25 mg a.i. per kernel were evaluated in 11 field trials in Illinois and Delaware from 2000 to 2003. Incidence of Stewart's wilt was significantly lower when seed was treated with insecticides than when plants were grown from nontreated seed in all but one trial. The level of control usually was between 50 and 90%. Small but statistically significant differences in incidence of systemically infected plants occurred among rates of insecticides in all trials except those in 2001. Usually, incidence of systemic Stewart's wilt was lower when higher rates of insecticides were applied; however, increasing the rate of insecticides from 0.125 mg a.i. to 1.25 mg a.i. per kernel had a relatively small effect on the level of Stewart's wilt control compared with the difference between treated and nontreated sweet corn seed. Based on a regression analysis, the lowest rates of the insecticides provided 64 to 72% control. The level of control increased about 1.85% with each additional 0.1 mg a.i. of insecticide per kernel from 0.125 mg a.i. to 1.25 mg a.i. Clothianidin provided an 8 or 9% higher level of control than thiamethoxam or imidacloprid at the same rate. Recommendations for application of seed treatment insecticides to processing and fresh market sweet corn differed somewhat due to substantial differences in the value of the crops. Based on estimated costs of $6 to $12 per 0.4 ha for the seed treatments, the economic break even point (i.e., cost of control = value from control) occurred in the range of 3 to 6% Stewart's wilt incidence for processing sweet corn valued at $325 per 0.4 ha and at about 1% Stewart's wilt incidence for fresh market sweet corn valued at $1,625 per 0.4 ha. Relatively small differences in levels of control conferred by commercially available rates of clothianidin (0.25 mg a.i. per kernel) and thiamethoxam (0.125 mg a.i. per kernel) were of little consequence in processing sweet corn but had considerable economic value in fresh market sweet corn.


Plant Disease ◽  
2011 ◽  
Vol 95 (4) ◽  
pp. 401-407 ◽  
Author(s):  
M. L. Ellis ◽  
K. D. Broders ◽  
P. A. Paul ◽  
A. E. Dorrance

Fusarium graminearum causes seed decay and damping-off of soybean. This study evaluated the effect of inoculum density of F. graminearum, temperature, and fungicide seed treatments on disease development. To determine the optimum conditions for disease development, individual soybean seed was inoculated with 100 μl of a suspension of 2.5 × 102, 2.5 × 103, 2.5 × 104, or 2.5 × 105 macroconidia/ml in a rolled-towel assay at temperatures of 18, 22, and 25°C. Inoculum concentrations of 2.5 × 104 macroconidia/ml or higher were necessary for optimum disease development at all temperatures. The efficacy of captan, fludioxonil, mefenoxam + fludioxonil, azoxystrobin, trifloxystrobin, and pyraclostrobin as seed treatments was then evaluated with the same assay at 2.5 × 104 and 2.5 × 105 macroconidia/ml. Seed treated with captan at 61.9 g a.i. or fludioxonil at 2.5 or 5.0 g a.i. per 100 kg developed smaller lesions than other seed treatments and the nontreated control. Based on these results, there are limited choices in fungicide seed treatments for managing this seedling disease, and it is possible that shifts in seed treatment products may have played a role in the recent emergence of this soybean pathogen.


2017 ◽  
Vol 22 (3) ◽  
pp. 233 ◽  
Author(s):  
B.S. Ismail ◽  
A.O.S. Enoma

A study of the degradation of endosulfan (6, 7, 8, 9, 10, 10-hexachloro – 1, 5, 5a, 6, 9, 9a –hexahydro – 6, 9- methano – 2, 4, 3 – benzodioxanthiepin 3 – oxide) in Malaysian sandy loam and clay soils was carried out using a radioisotopic technique under laboratory conditions. It was demonstrated that endosulfan possessed long half-lives of 433, 495 and 462 days in aerobic sandy loam, aerobic clay and anaerobic clay soils respectively. Endosulfan degrades faster in non-sterile than in sterile soils. This study indicates that microorganisms are involved in the degradation of endosulfan. In general, degradation of the pesticide was relatively higher in the clay soil than in the sandy soil. Apart from the parent compounds, α- and β-isomers, the degradation products include endosulfan sulphate and three minor unidentified products. 


2021 ◽  
Vol 29 ◽  
pp. 179-191
Author(s):  
Marco Antônio Alves Ferreira ◽  
Rodrigo Esser ◽  
Gilmar Oliveira Santos ◽  
Rose Luiza Moraes Tavares

Water and nutrient supply, as well as the soil texture, are some of the challenges that affect forage yield. Therefore, the objective of this work was to evaluate the agronomic performance of Urochloa brizantha cv. Marandu cropped in clayey and sandy soil submitted to water and nutritional management, in the municipality of Rio Verde, State of Goiás. The treatments consisted of a combination of soil with two textural classes (clayey and sandy), two levels of fertilization (A1: 30; 7 and 36 and A2: 45; 10.5 and 54 NPK per Mg DM, respectively), and seven water depths (0%, 25%, 50%, 75%, 100%, 125% and 150% of the crop evapotranspiration (ETc)), in four replicates. Crop performance was evaluated using SPAD index, plant height, leaf length, leaf width, leaf/stem ratio, crude protein, neutral detergent fiber, and dry matter. The data were subjected to multivariate data analysis. The principal component analysis allowed to observe that the first principal component explained 68.94% of the data, being characterized for promoting the best crop performance in relation to leaf length and width, characteristics that reflect in the other assessed variables. Forage performed poorly in winter because of the limitation of the climatic conditions. A higher yield was observed in the dry matter submitted to depths greater than 100% of ETc, regardless of the soil texture and the level of fertilization.


1997 ◽  
Vol 45 (2) ◽  
pp. 263-275
Author(s):  
R.L.M. Schils

In a field trial in 1989-93 on clay soil at Lelystad, Netherlands, a mixed sward of Lolium perenne cv. Profit and Magella and Trifolium repens cv. Retor was given annual applications of 0, 25, 50, 75 or 100 kg N ha-1 and was cut 4-5 or 6-7 times a year. In a trial in 1992-94 on sandy soil in Overijssel, a sward of L. perenne cv. Meltra, Citadel and Condesa oversown with T. repens cv. Retor in 1991 was given annual applications of 0, 50 or 100 kg N ha-1. Average annual dry matter (DM) yields were 14.66 and 13.76 t ha-1 year-1 for the clay and sandy soil, respectively. Yields increased with increasing N rate at both sites. Cutting frequency had no consistent effect on DM yield, and there was no significant interaction between N rate and cutting frequency. T. repens contents decreased with increasing N rate, reducing the DM yield in the cuts after the first in the fertilized treatments. Annual N yields were not affected by N application. The higher cutting frequency increased the T. repens content from 36 to 47% and the N yield from 458 to 524 kg ha-1, but did not affect the DM yield.


Author(s):  
Zhongbin Liao ◽  
Yali Chen ◽  
Jie Ma ◽  
Md. Shafiqul Islam ◽  
Liping Weng ◽  
...  

The intense management practices in greenhouse production may lead to heavy metal (HM) accumulations in soils. To determine the accumulation characteristics of HM and to evaluate possible HM sources in greenhouse soils, thirty typical greenhouse soil samples were collected in Shouguang District, Shandong Province, China. The results indicate that the Cd, Cu, and Zn concentrations are, respectively, 164.8%, 78.6%, and 123.9% higher than their background values. In the study area, Cd exhibits certain characteristics, such as wide variations in the proportion of its exchangeable form and the highest mobility factor and geo-accumulation index, which are indicative of its high bioavailability and environmental risk. In addition, there is a significant positive correlation between pairs of Cd, P, soil organic carbon, and cultivation age. Combined with principal component analysis, the results indicate the clear effects that agricultural activities have on Cd, Cu, and Zn accumulation. However, Cr, Ni, and Pb have a significant correlation with soil Fe and Al (hydr)-oxides, which indicates that these metals mainly originate from parent materials. This research indicated that long-term intensive fertilization (especially the application of chemical fertilizers and livestock manure) leads to Cd, Cu, and Zn accumulation in greenhouse soils in Shouguang. And the time required to reach the maximum permeable limit in agricultural soils for Cd, Cu, and Zn is 23, 51, and 42 years, respectively, based on their current increasing rates.


HortScience ◽  
1994 ◽  
Vol 29 (4) ◽  
pp. 277-278 ◽  
Author(s):  
Carlos A. Parera ◽  
Daniel J. Cantliffe

Poor emergence and low seedling vigor are characteristics of many supersweet sweet corn (Zea mays L.) cultivars carrying the shrunken-2 (sh2) gene. Four sh2 sweet corn cultivar seeds [`How Sweet It Is' (HSII), `Crisp N' Sweet 711' (CNS-711), `Sweet Belle' (SB), and `Dazzle' (DZ)] were solid-matrix-primed (SMP), SMP with sodium hypochlorite (SMPcl), treated with a fungicide combination (F) (Imazalil + Captan + Apron + Thiram), or primed with the aforementioned fungicides (SMPf). The seed treatments were tested in the laboratory and the field. Seed imbibition and leachate electrical conductivity were lower in SMP seeds than in nonprimed seeds. In the field, emergence percentage and rate of CNS-711 and SB (high-vigor seeds) were not improved by the seed treatments compared to the nontreated seeds. Emergence percentage and rate of HSII and DZ (considered low-vigor seeds) were improved as a result of SMPcl, SMPf, or F treatments compared to nonprimed seeds. Compared to the F treatment, the SMPcl presowing treatment increased DZ seedling emergence rate and percentage. The combined SMP and seed disinfection via NaOCl seems to be a promising fungicide seed-treatment substitute that improves the stand establishment and seedling vigor of sh2 sweet corn cultivars. Chemical names used: 1-[2-(2,4-dichlorophenyl)-2-(2-propenyloxy)ethyl]-1 H imidazole (Imazalil); N-[(trichloromethyl)thio]-4-cyclohexene-1,2-dicarboximide(Captan); N- (2,6-dimethylphenyl)- N -(methoxyacetyl)alanine methyl ester (Apron); tetramethylthiuram disulfide (Thiram).


Sign in / Sign up

Export Citation Format

Share Document