scholarly journals Fiberglass Plaster Mesh as Reinforcement for Cement Bonded Particleboard

2021 ◽  
Vol 72 (2) ◽  
pp. 187-192
Author(s):  
Hasan Hüseyin Taş

The effects of fiberglass plaster mesh (FPM) as reinforcement on some physical and mechanical properties of cement bonded particleboard (CBP) were examined. Experimental CBP with and without FPM were manufactured in laboratory conditions using wood particles, cement, tap water and chemical accelerators. Two plies of FPM, manufactured using fiberglass and polyester resin, were laid within the experimental CBP. The target density of CBP was 1300 kg/m3 in the study. Three different types of chemical accelerators (CaCl2, KCl, DARASET ® 580) were used in the experiments. Properties of CBP evaluated include 2- and 24-hour - thickness swelling (TS), 2- and 24-hour - water absorption (WA) and bending stiffness (MOE) and strength (MOR). The results indicate that all the board properties tested were significantly improved by FPM application. The average MOE values of the CBP boards with FPM was two times higher than those of the boards without FPM. Dimensional stability and MOR of the CBP boards were also significantly improved with the use of FPM. FPM can be used to improve inferior properties of the CBP, so as to make it more compatible with other wood based construction materials.

2021 ◽  
Vol 9 (3) ◽  
pp. 454-465
Author(s):  
Tengku Muhammad Renzy Hariz ◽  
Indra Agus Santosa ◽  
Muhammad Iqbal Maulana ◽  
Marwanto ◽  
Denni Prasetia ◽  
...  

The objectives of this research were to evaluate bamboo-oriented strand board (BOSB) characteristics made from betung (Dendrocalamus asper), ampel (Bambusa vulgaris), and their mixtures at two different contents (3% and 5%) of methylene diphenyl di-isocyanate (MDI) adhesives. The strands were steam-treated at 126°C for 1 h under the pressure of 0.14 MPa. Three-layered BOSBs with a target density of 0.7 g/cm3 were made with the size of 30 cm x 30 cm x 0.9 cm and a shelling ratio of 1:2:1 (face:core:back layers). The physical and mechanical properties of BOSB were evaluated following JIS A 5908 (2003) standard, and the results were compared with the CSA 0437.0 Grade O-1 standard. The results show that BOSB from the mixtures of betung and ampel bamboo strands has higher dimensional stability as shown by the decrease in water absorption and thickness swelling and higher mechanical properties than single BOSB. All BOSBs with 5% resin content have higher dimensional stability, MOE, and MOR than BOSB with 3% resin content. The physical and mechanical properties of all BOSB manufactured met the CSA 0437.0 Grade O-1 standard. This study proved that BOSBs from the mixture of betung and ampel strands have the potential to be developed due to having better physical and mechanical qualities than a single BOSB. Keywords: ampel (Bambusa vulgaris), bamboo oriented strand board, betung (Dendrocalamus asper), resin content, strand mixtures


2021 ◽  
Vol 114 ◽  
pp. 70-75
Author(s):  
Radosław Auriga ◽  
Piotr Borysiuk ◽  
Alicja Auriga

An attempt to use „Tetra Pak” waste material in particleboard technology. The study investigates the effect of addition Tetra Pak waste material in the core layer on physical and mechanical properties of chipboard. Three-layer chipboards with a thickness of 16 mm and a density of 650 kg / m3 were manufactured. The share of Tetra Pak waste material in the boards was varied: 0%, 5%, 10% and 25%. The density profile was measured to determine the impact of Tetra Pak share on the density distribution. In addition, the manufactured boards were tested for strength (MOR, MOE, IB), thickness swelling and water absorption after immersion in water for 2 and 24 hours. The tests revealed that Tetra Pak share does not affect significantly the value of static bending strength and modulus of elasticity of the chipboard, but it significantly decreases IB. Also, it has been found that Tetra Pak insignificantly decreases the value of swelling and water absorption of the chipboards.


2020 ◽  
Vol 4 (3) ◽  
pp. 609-614
Author(s):  
K. J. Lawal ◽  
A. Oluyege ◽  
T. S. Bola ◽  
K. S. Aina ◽  
B. C. Falemara ◽  
...  

This study investigated the dimensional stability and strength properties of plastic bonded composites produced from wood waste particles and polyethylene using extruder. The composites were produced from wood species such as such as: Triplochiton scleroxylon, Terminalia superba and Gmelina arborea at a mixing proportion of 60:40 (plastic/wood) on a weight by weight basis. Evaluation of properties was carried out in accordance with the American Standard Testing Methods of 570 and 790 to determine the dimensional stability and strength properties of the composites. The results of findings revealed that water absorption and thickness swelling of the wood composites ranged from 10.08% to 15.36% and 4.33% to 5.58% respectively after 24hours and 48hours immersion in water. Tensile strength also ranged between 29.4MPa and 45.6MPa. Composite board made from T. superba wood particles had the lowest significant water absorption (10.08%), thickness swelling (4.33%) and highest significant tensile strength (45.6MPa) compared to composites produced from G. arborea and T. scleroxylon wood particles. It was observed that high density wood species exhibit lower water intake, lower thickness swelling and higher tensile strength, while the contrary is the case for lower density wood species. In conclusion, the three tree species used for the study could be recommended for the production of wood composite like particle board, fibre board, wood cement boards and others.


FLORESTA ◽  
2021 ◽  
Vol 51 (2) ◽  
pp. 419
Author(s):  
Giuliano Ferreira Pereira ◽  
Setsuo Iwakiri ◽  
Rosilani Trianoski ◽  
Polliana D'angelo Rios ◽  
Renan Zunta Raia

The objective of this research was to evaluate the effects of thermal modifications, at different temperatures and exposure times, on the technological properties of mixed particleboard / OSB panels made out of Eucalyptus badjensis. Using the wood of Eucalyptus badjensis, Particleboard, OSB and mixed Particleboard/OSB panels (control and thermally modified) were manufactured. The mixed panels’ thermal modification was carried out under three temperatures (180ºC, 200ºC and 220ºC) and two exposure times (10 minutes and 12 minutes). For the panels’ manufacturing, 6% of phenol-formaldehyde adhesive and 1% of paraffin were employed, which was calculated based on the particles’ dry mass. The water absorption and thickness swelling properties were evaluated after 2 and 24 hours of immersion, in addition to the panels’ modulus of elasticity, modulus of rupture and internal bond. Based on the results, we were able to conclude that the thermal modification affected most of the physical properties positively. From the different exposure times studied, the most effective one was the period of 12 minutes, especially for water absorption after 2 hours, which caused a reduction of 11.27%. In turn, the most effective temperature was of 220ºC, highlighting the thickness swelling after 24 hours, which caused a swelling decrease of 23.76% in comparison with the control panels. Regarding the mechanical properties, the thermal modification, in terms of the studied exposure times and temperatures, did not affect the results of the mixed particleboard /OSB panels. 


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3566-3584
Author(s):  
Qingde Li ◽  
Yingyi Liang ◽  
Feng Chen ◽  
Tonghui Sang

Wood fiber was modified by impulse-cyclone drying treatment with poplar and montmorillonite as reinforcing materials; mMMT/polypropylene/wood fiber foaming composite was prepared by the hot compression process. The effects of modification, temperature, and content of montmorillonite on physical and mechanical properties of the composite were analyzed. Mechanical properties, porosity, shrinkage, water absorption, and thickness swelling tests showed that when mMMT reinforcement was 5 wt%, the best performance was achieved. The scanning electron microscopy observations showed that bubble holes were distributed widely and evenly, and mMMT appeared in the cell gap and was encapsulated by polypropylene, which maximized the bonding effect. Flexural strength was 27.5 MPa, flexural modulus was 2110 MPa, tensile strength was 20.0 MPa, and impact strength was 6.30 KJ/m2. When absolute volume of dense solid reached 70.8 cm3, porosity was 21.4% and shrinkage was 1.17%, which indicated that the water absorption increased most remarkably under that test condition. When equilibrium water absorption reached 9.28%, the thickness swelling decreased by 25%. The results showed that mMMT effectively optimized mechanical properties of wood-based foamed composites and improved hygroscopic properties.


2011 ◽  
Vol 3 (1) ◽  
pp. 7
Author(s):  
Sari Mirad Noor

The need of log increace rapidly, mean while forest product decrease, so efficiency on wood process should be done wisely, in the other hand plastic waste is uncompossed material, become an environmental problems. This research aims to determine the impact of particles of type HDPE plastic wastes and twigs/branches of rubber on some physical and mechanical properties of wood. Physical properties have been tested for water content, density, thickness, and water absorption. Although mechanical properties tests were tough Broken/Module of Rufture (MOR) and the preservation of architecture/modulus of elasticity (MOE).     The raw materials used are polyethylene of high density of waste plastic and rubber adhesive urea formaldehyde branch branch. Experimental design used the randomized Completely Design (RCD) 5 x 4, in which each treatment became much like 5 times replicated).The treatment used is the diversity of the composition of the waste of plastic of different types of polyethylene of high density provides a significant effect on the content of water, water absorption, the density and the development of thickness. With regard to the persistence and the fracture of the arch determination not to give a significant effect.Keywords: physical and mechanical properties, particle board, HDPE plastic waste, branch/twig of  rubber.


2016 ◽  
Vol 8 (2) ◽  
pp. 43-52 ◽  
Author(s):  
Djoko Purwanto

Oil palm empty fruit bunches (OPEFB) fiber were industrial waste that has not been widely used by the community, only stacked and cause odors that interfere with the surrounding environment. This research studied the utilization of OPEFB fiber for cement board products using cement as resin and CaCl2 as accelerator. Laboratory scale cement board made from OPEFB fiber were mixed with cement, and CaCl2. The composition of fiber and cement were 1:1, 1:1.5, 1:2, and CaCl2 variations were 0%, 1% and 3%. A mixture of fibers, cement and CaCl2 was compressed at the pressure of 4 ton for 24 hours. The cement boards were tested for physical and mechanical properties according to JIS A 5417-1992, and the results were compared to the requirements of the cement board JIS A 5417-1992. Cement board made from fiber and cement composition 1:1.5 and CaCl2 content 3% produced moisture content, thickness swelling, water absorption, density, modulus of rupture/MOR, modulus of elasticity/MOE and screw withdrawal strength that met the requirement of JIS A 5417-1992. The composition of fiber and cement and the variations of CaCl2 content produced significant effect on water content, water absorption, thickness swelling, modulus of rupture/MOR, modulus of elasticity/MOE and screw withdrawal strength on cement boards.Keywords : oil palm empty fruit bunches fiber, cement boards, physical and mechanical properties


Author(s):  
Sujan Kanti Das ◽  
Mithun Rani Nath ◽  
Rajib Chandra Das ◽  
Manas Mondal ◽  
Snahasis Bhowmik

Compression molding has produced quartz-reinforced polyester composites (QPCs) weighing 10 to 40 per cent quartz relative to the weight of unsaturated polyester resin. Synergistic changes were made in the composite properties and were superior to those of the individual components. The composite's physical and  mechanical properties such as bulk density, water absorption , tensile strength, flexural strength, hardness have illustrated the competency of the composite being developed. It was found that for the resultant composite examined, the percentage of water absorption is very small. However, when quartz content were increased, water absorption grew very slowly. Enhancement of mechanical properties strongly corresponds to strong adhesion force of quartz with the matrix and it influenced by well-disperse quartz particles on the whole surface of composite. This paper also performed thermal characterization of the composites. Because of these remarkable properties, as prepared composite can find applications in packaging, fuel cell, solar cell, structural materials and households purposes.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4875 ◽  
Author(s):  
Pavlo Bekhta ◽  
Gregory Noshchenko ◽  
Roman Réh ◽  
Lubos Kristak ◽  
Ján Sedliačik ◽  
...  

The purpose of this study was to evaluate the feasibility of using magnesium and sodium lignosulfonates (LS) in the production of particleboards, used pure and in mixtures with urea-formaldehyde (UF) resin. Polymeric 4,4′-diphenylmethane diisocyanate (pMDI) was used as a crosslinker. In order to evaluate the effect of gradual replacement of UF by magnesium lignosulfonate (MgLS) or sodium lignosulfonate (NaLS) on the physical and mechanical properties, boards were manufactured in the laboratory with LS content varying from 0% to 100%. The effect of LS on the pH of lignosulfonate-urea-formaldehyde (LS-UF) adhesive compositions was also investigated. It was found that LS can be effectively used to adjust the pH of uncured and cured LS-UF formulations. Particleboards bonded with LS-UF adhesive formulations, comprising up to 30% LS, exhibited similar properties when compared to boards bonded with UF adhesive. The replacement of UF by both LS types substantially deteriorated the water absorption and thickness swelling of boards. In general, NaLS-UF-bonded boards had a lower formaldehyde content (FC) than MgLS-UF and UF-bonded boards as control. It was observed that in the process of manufacturing boards using LS adhesives, increasing the proportion of pMDI in the adhesive composition can significantly improve the mechanical properties of the boards. Overall, the boards fabricated using pure UF adhesives exhibited much better mechanical properties than boards bonded with LS adhesives. Markedly, the boards based on LS adhesives were characterised by a much lower FC than the UF-bonded boards. In the LS-bonded boards, the FC is lower by 91.1% and 56.9%, respectively, compared to the UF-bonded boards. The boards bonded with LS and pMDI had a close-to-zero FC and reached the super E0 emission class (≤1.5 mg/100 g) that allows for defining the laboratory-manufactured particleboards as eco-friendly composites.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7901-7915
Author(s):  
Ümit Büyüksarı ◽  
Ömer Özyürek

Bio-composites were produced from untreated (UT) and hydro-thermally treated (HTT) wheat straw (WS) particles and wood, and their dimensional stability and mechanical properties were investigated. The HTT treatment consisted of subjecting the WS particles to a steam explosion process for 8 min at 180 °C. The HTT and UT WS particles were mixed with the wood particles at 10, 20, 30, and 40% ratios. The physical properties, including density, water absorption (WA), and thickness swelling (TS), were determined for the bio-based composites. The mechanical properties evaluated included the modulus of rupture, modulus of elasticity, and internal bond strength. Statistical analyses showed that the hydro-thermal treatment and the WS ratio had significant effects on the dimensional stability and mechanical properties of the bio-composites. The WA of the composites after 2-h and 24-h rose significantly when the HTT WS particle ratio was increased from 10 to 40%. The 2-h and 24-h WA values of HTT-10 were 6.3% and 5.3% lower than those of UT-10, respectively. Improvements in the 2-h TS value were achieved by the HTT WS particles at the 10% ratio, and in the 24-h TS value at the 10 and 40% ratios. The mechanical properties of the composites were higher in the HTT group, but decreased in both the UT and HTT groups as the WS ratio increased.


Sign in / Sign up

Export Citation Format

Share Document