scholarly journals The sweep of the boreal in time and space, from forest formations to genes, and implications for management

1996 ◽  
Vol 72 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Alan G. Gordon

The ranges and ancient origins down through the Pleistocene of the species which make up the Boreal Forest formation are discussed. Jack and lodgepole pine, white and black spruce are essentially modern; others are older. Genetic variation of the five major boreal species groups—poplars, birches, pines, spruces and tamarack—is outlined. A discussion of natural hybrids and introgression follows with examples of types of species pairs, and artificial hybridization in poplars, and white and black spruce. Specialized life strategies of species for growing in the boreal zone and how silvicultural systems may be related to them are explained. Understanding genetic diversity and its importance in management applications is critical for the maintenance of well-adapted populations. Failure to do so results in erosion or even total loss of gene pools. Historical examples and current practices in the northeast and certain areas of the boreal forest indicate that losses in genetic diversity, reduced biodiversity, commercial and even local extinction may be widespread. It is hoped that development and application of as yet proximal forest genetic management principles will enable the maintenance of the forests' genetic structures and gene pools, critical for the true sustainablity of forest ecosystems. Key words: boreal, biogeography, genetic variation and diversity, hybrids, inbreeding, life strategies, silvicultural systems, future

Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ai-ling Hour ◽  
Wei-hsun Hsieh ◽  
Su-huang Chang ◽  
Yong-pei Wu ◽  
Han-shiuan Chin ◽  
...  

Abstract Background Rice, the most important crop in Asia, has been cultivated in Taiwan for more than 5000 years. The landraces preserved by indigenous peoples and brought by immigrants from China hundreds of years ago exhibit large variation in morphology, implying that they comprise rich genetic resources. Breeding goals according to the preferences of farmers, consumers and government policies also alter gene pools and genetic diversity of improved varieties. To unveil how genetic diversity is affected by natural, farmers’, and breeders’ selections is crucial for germplasm conservation and crop improvement. Results A diversity panel of 148 rice accessions, including 47 cultivars and 59 landraces from Taiwan and 42 accessions from other countries, were genotyped by using 75 molecular markers that revealed an average of 12.7 alleles per locus with mean polymorphism information content of 0.72. These accessions could be grouped into five subpopulations corresponding to wild rice, japonica landraces, indica landraces, indica cultivars, and japonica cultivars. The genetic diversity within subpopulations was: wild rices > landraces > cultivars; and indica rice > japonica rice. Despite having less variation among cultivars, japonica landraces had greater genetic variation than indica landraces because the majority of Taiwanese japonica landraces preserved by indigenous peoples were classified as tropical japonica. Two major clusters of indica landraces were formed by phylogenetic analysis, in accordance with immigration from two origins. Genetic erosion had occurred in later japonica varieties due to a narrow selection of germplasm being incorporated into breeding programs for premium grain quality. Genetic differentiation between early and late cultivars was significant in japonica (FST = 0.3751) but not in indica (FST = 0.0045), indicating effects of different breeding goals on modern germplasm. Indigenous landraces with unique intermediate and admixed genetic backgrounds were untapped, representing valuable resources for rice breeding. Conclusions The genetic diversity of improved rice varieties has been substantially shaped by breeding goals, leading to differentiation between indica and japonica cultivars. Taiwanese landraces with different origins possess various and unique genetic backgrounds. Taiwanese rice germplasm provides diverse genetic variation for association mapping to unveil useful genes and is a precious genetic reservoir for rice improvement.


Agronomy ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 119 ◽  
Author(s):  
Petr Smýkal ◽  
Matthew Nelson ◽  
Jens Berger ◽  
Eric Von Wettberg

Humans have domesticated hundreds of plant and animal species as sources of food, fiber, forage, and tools over the past 12,000 years, with manifold effects on both human society and the genetic structure of the domesticated species. The outcomes of crop domestication were shaped by selection driven by human preferences, cultivation practices, and agricultural environments, as well as other population genetic processes flowing from the ensuing reduction in effective population size. It is obvious that any selection imposes a reduction of diversity, favoring preferred genotypes, such as nonshattering seeds or increased palatability. Furthermore, agricultural practices greatly reduced effective population sizes of crops, allowing genetic drift to alter genotype frequencies. Current advances in molecular technologies, particularly of genome sequencing, provide evidence of human selection acting on numerous loci during and after crop domestication. Population-level molecular analyses also enable us to clarify the demographic histories of the domestication process itself, which, together with expanded archaeological studies, can illuminate the origins of crops. Domesticated plant species are found in 160 taxonomic families. Approximately 2500 species have undergone some degree of domestication, and 250 species are considered to be fully domesticated. The evolutionary trajectory from wild to crop species is a complex process. Archaeological records suggest that there was a period of predomestication cultivation while humans first began the deliberate planting of wild stands that had favorable traits. Later, crops likely diversified as they were grown in new areas, sometimes beyond the climatic niche of their wild relatives. However, the speed and level of human intentionality during domestication remains a topic of active discussion. These processes led to the so-called domestication syndrome, that is, a group of traits that can arise through human preferences for ease of harvest and growth advantages under human propagation. These traits included reduced dispersal ability of seeds and fruits, changes to plant structure, and changes to plant defensive characteristics and palatability. Domestication implies the action of selective sweeps on standing genetic variation, as well as new genetic variation introduced via mutation or introgression. Furthermore, genetic bottlenecks during domestication or during founding events as crops moved away from their centers of origin may have further altered gene pools. To date, a few hundred genes and loci have been identified by classical genetic and association mapping as targets of domestication and postdomestication divergence. However, only a few of these have been characterized, and for even fewer is the role of the wild-type allele in natural populations understood. After domestication, only favorable haplotypes are retained around selected genes, which creates a genetic valley with extremely low genetic diversity. These “selective sweeps” can allow mildly deleterious alleles to come to fixation and may create a genetic load in the cultivated gene pool. Although the population-wide genomic consequences of domestication offer several predictions for levels of the genetic diversity in crops, our understanding of how this diversity corresponds to nutritional aspects of crops is not well understood. Many studies have found that modern cultivars have lower levels of key micronutrients and vitamins. We suspect that selection for palatability and increased yield at domestication and during postdomestication divergence exacerbated the low nutrient levels of many crops, although relatively little work has examined this question. Lack of diversity in modern germplasm may further limit our capacity to breed for higher nutrient levels, although little effort has gone into this beyond a handful of staple crops. This is an area where an understanding of domestication across many crop taxa may provide the necessary insight for breeding more nutritious crops in a rapidly changing world.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243238
Author(s):  
Wilson Nkhata ◽  
Hussein Shimelis ◽  
Rob Melis ◽  
Rowland Chirwa ◽  
Tenyson Mzengeza ◽  
...  

Knowledge of genetic diversity in plant germplasm and the relationship between genetic factors and phenotypic expression is vital for crop improvement. This study's objectives were to understand the extent of genetic diversity and population structure in 60 common bean genotypes from East and Southern Africa. The common bean genotypes exhibited significant (p<0.05) levels of variability for traits such as days to flowering (DTF), days to maturity (DTM), number of pods per plant (NPP), number of seeds per pod (NSP), and grain yield per hectare in kilograms (GYD). About 47.82 per cent of the variation among the genotypes was explained by seven principal components (PC) associated with the following agronomic traits: NPP, NFF (nodes to first flower), DTF, GH (growth habit) and GYD. The SNP markers revealed mean gene diversity and polymorphic information content values of 0.38 and 0.25, respectively, which suggested the presence of considerable genetic variation among the assessed genotypes. Analysis of molecular variance showed that 51% of the genetic variation were between the gene pools, while 49% of the variation were within the gene pools. The genotypes were delineated into two distinct groups through the population structure, cluster and phylogenetic analyses. Genetically divergent genotypes such as DRK57, MW3915, NUA59, and VTTT924/4-4 with high yield and agronomic potential were identified, which may be useful for common bean improvement.


Author(s):  
Kimberley G. Barrett ◽  
Geneviève Amaral ◽  
Melanie Elphinstone ◽  
Malcolm L. McAdie ◽  
Corey S. Davis ◽  
...  

AbstractCaptive breeding is often a last resort management option in the conservation of endangered species which can in turn lead to increased risk of inbreeding depression and loss of genetic diversity. Thus, recording breeding events via studbook for the purpose of estimating relatedness, and facilitating mating pair selection to minimize inbreeding, is common practice. However, as founder relatedness is often unknown, loss of genetic variation and inbreeding cannot be entirely avoided. Molecular genotyping is slowly being adopted in captive breeding programs, however achieving sufficient resolution can be challenging in small, low diversity, populations. Here, we evaluate the success of the Vancouver Island marmot (Marmota vancouverensis; VIM; among the worlds most endangered mammals) captive breeding program in preventing inbreeding and maintaining genetic diversity. We explored the use of high-throughput amplicon sequencing of microsatellite regions to assay greater genetic variation in both captive and wild populations than traditional length-based fragment analysis. Contrary to other studies, this method did not considerably increase diversity estimates, suggesting: (1) that the technique does not universally improve resolution, and (2) VIM have exceedingly low diversity. Studbook estimates of pairwise relatedness and inbreeding in the current population were weakly, but positively, correlated to molecular estimates. Thus, current studbooks are moderately effective at predicting genetic similarity when founder relatedness is known. Finally, we found that captive and wild populations did not differ in allelic frequencies, and conservation efforts to maintain diversity have been successful with no significant decrease in diversity over the last three generations.


Genome ◽  
2002 ◽  
Vol 45 (3) ◽  
pp. 503-512 ◽  
Author(s):  
M S Kim ◽  
P H Moore ◽  
F Zee ◽  
M MM Fitch ◽  
D L Steiger ◽  
...  

Genetic relationships among Carica papaya cultivars, breeding lines, unimproved germplasm, and related species were established using amplified fragment length polymorphism (AFLP) markers. Seventy-one papaya accessions and related species were analyzed with nine EcoRI–MseI primer combinations. A total of 186 informative AFLP markers was generated and analyzed. Cluster analysis suggested limited genetic variation in papaya, with an average genetic similarity among 63 papaya accessions of 0.880. Genetic diversity among cultivars derived from the same or similar gene pools was smaller, such as Hawaiian Solo hermaphrodite cultivars and Australian dioecious cultivars with genetic similarity at 0.921 and 0.912, respectively. The results indicated that self-pollinated hermaphrodite cultivars were as variable as open-pollinated dioecious cultivars. Genetic diversity between C. papaya and six other Carica species was also evaluated. Carica papaya shared the least genetic similarity with these species, with an average genetic similarity of 0.432; the average genetic similarity among the six other species was 0.729. The results from AFLP markers provided detailed estimates of the genetic variation within and among papaya cultivars, and supported the notion that C. papaya diverged from the rest of Carica species early in the evolution of this genus.Key words: DNA fingerprinting, germplasm, genetic relationship, molecular phylogeny, polymorphism.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Rongmin Guo ◽  
Lihua Zhou ◽  
Hongbo Zhao ◽  
Fadi Chen

OpisthopappusShih is endemic to the Taihang Mountains, China. It grows in the crevice of cliffs and is in fragmented distribution. This genus consists of two species, namely,O. taihangensis(Ling) Shih andO. longilobusShih, which are both endangered plants in China. This study adopted intersimple sequence repeat markers (ISSR) to analyze the genetic diversity and genetic structure from different levels (genus, species, and population) in this genus. A total of 253 loci were obtained from 27 primers, 230 of which were polymorphic loci with a proportion of polymorphic bands (PPB) of up to 90.91% at genus level. At species level, bothO. taihangensis(PPB=90.12%,H=0.1842, andI=0.289) andO. longilobus(PPB=95.21%,H=0.2226, andI=0.3542) have high genetic diversity. Their respective genetic variation mostly existed within the population. And genetic variation inO. longilobus(84.95%) was higher than that inO. taihangensis(80.45%). A certain genetic differentiation among populations inO. taihangensiswas found (Gst=0.2740,Φst=0.196) and genetic differentiation inO. longilobuswas very small (Gst=0.1034,Φst=0.151). Gene flow in different degrees (Nm=1.325and 4.336, resp.) and mating system can form the existing genetic structures of these two species. Furthermore, genetic differentiation coefficient (Gst=0.0453) between species and the clustering result based on the genetic distance showed that interspecific differentiation betweenO. taihangensisandO. longilobuswas not significant and could occur lately.


1992 ◽  
Vol 22 (9) ◽  
pp. 1332-1337 ◽  
Author(s):  
A. Mosseler ◽  
K.N. Egger ◽  
G.A. Hughes

Random amplified polymorphic DNA (RAPD) markers were used to characterize genetic variation in disjunct Newfoundland populations of red pine (Pinusresinosa Ait.) for comparison with individuals from throughout the mainland range of red pine. Red pine demonstrated a largely monomorphic profile for 69 arbitrary oligonucleotide primers. DNA samples from white spruce (Piceaglauca (Moench) Voss) and black spruce (Piceamariana (Mill.) B.S.P.) that were screened together with red pine for 11 oligonucleotide primers showed abundant polymorphisms, confirming the genetic heterogeneity that characterizes these Boreal Zone spruces. Results with RAPD markers correspond with genetic diversity estimates using isozyme gene markers for both spruce species and red pine. RAPD markers provided further confirmation of low levels of genetic variation for a random sample of the red pine genome. A period of between 8000 and 10 000 years of isolation on the island of Newfoundland has resulted in very little detectable genetic differentiation of island populations from mainland populations, and the mainland populations have not recovered from losses of genetic diversity following a hypothesized genetic bottleneck that may have been experienced during glacial episodes of the Holocene. The low levels of genetic variation observed in red pine demonstrate the long time periods required for recovery following a loss of genetic diversity in long-lived, long-generation organisms like trees.


2020 ◽  
Author(s):  
Ai-ling Hour ◽  
Wei-hsun Hsieh ◽  
Su-huang Chang ◽  
Yong-pei Wu ◽  
Han-shiuan Chin ◽  
...  

Abstract Background: Rice, the most important crop in Asia, has been cultivated in Taiwan for more than 5,000 years. The landraces preserved by indigenous peoples and brought by immigrants from China hundreds of years ago exhibit large variation in morphology, implying that they comprise rich genetic resources. Breeding goals according to the preferences of farmers, consumers and government policies also alter gene pools and genetic diversity of improved varieties. To unveil how genetic diversity is affected by natural, farmers’, and breeders’ selections is crucial for germplasm conservation and crop improvement.Results: A diversity panel of 148 rice accessions, including 47 cultivars and 59 landraces from Taiwan and 42 accessions from other countries, were genotyped by using 75 molecular markers that revealed an average of 12.7 alleles per locus with mean polymorphism information content of 0.72. These accessions could be grouped into five subpopulations corresponding to wild rice, japonica landraces, indica landraces, indica cultivars and japonica cultivars. The genetic diversity within subpopulations was: wild rices > landraces > cultivars; and indica rice > japonica rice. Despite having less variation among cultivars, japonica landraces had greater genetic variation than indica landraces because the majority of Taiwanese japonica landraces preserved by indigenous peoples were classified as tropical japonica. Two major clusters of indica landraces were formed by phylogenetic analysis, in accordance with immigration from two origins. Genetic erosion had occurred in later japonica varieties due to a narrow selection of germplasm being incorporated into breeding programs for premium grain quality. Genetic differentiation between early and late cultivars was significant in japonica (FST = 0.3751) but not in indica (FST = 0.0045), indicating effects of different breeding goals on modern germplasm. Indigenous landraces with unique intermediate and admixed genetic backgrounds were untapped, representing valuable resources for rice breeding.Conclusions: The genetic diversity of improved rice varieties has been substantially shaped by breeding goals, leading to differentiation between indica and japonica cultivars. Taiwanese landraces with different origins possess various and unique genetic backgrounds. Taiwanese rice germplasm provides diverse genetic variation for association mapping to unveil useful genes and is a precious genetic reservoir for rice improvement.


Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 386
Author(s):  
Carlos I. Campos ◽  
Melinda A. Martinez ◽  
Daniel Acosta ◽  
Jose A. Diaz-Luque ◽  
Igor Berkunsky ◽  
...  

A key aspect in the conservation of endangered populations is understanding patterns of genetic variation and structure, which can provide managers with critical information to support evidence-based status assessments and management strategies. This is especially important for species with small wild and larger captive populations, as found in many endangered parrots. We used genotypic data to assess genetic variation and structure in wild and captive populations of two endangered parrots, the blue-throated macaw, Ara glaucogularis, of Bolivia, and the thick-billed parrot, Rhynchopsitta pachyrhyncha, of Mexico. In the blue-throated macaw, we found evidence of weak genetic differentiation between wild northern and southern subpopulations, and between wild and captive populations. In the thick-billed parrot we found no signal of differentiation between the Madera and Tutuaca breeding colonies or between wild and captive populations. Similar levels of genetic diversity were detected in the wild and captive populations of both species, with private alleles detected in captivity in both, and in the wild in the thick-billed parrot. We found genetic signatures of a bottleneck in the northern blue-throated macaw subpopulation, but no such signal was identified in any other subpopulation of either species. Our results suggest both species could potentially benefit from reintroduction of genetic variation found in captivity, and emphasize the need for genetic management of captive populations.


2011 ◽  
Vol 76 (4) ◽  
pp. 321-331 ◽  
Author(s):  
Magdalena Szczepaniak ◽  
Elżbieta Cieślak

Fragmented distribution, the breeding system and effects of genetic drift in small-size populations occurring at edge of the species range play an important role in shaping genetic diversity of such a species. <em>Melica transsilvanica</em> is a plant rare in the flora of Poland, where it reaches the northern limit of its continuous range. Amplified Fragment Length Polymorphism (AFLP) DNA profiling method was applied to measure genetic diversity among and within populations of <em>M. transsilvanica</em>. Additionally, genetic relationships between M. transsilvanica and Melica ciliata, two closely related species, were explored. A total of 68 plants from 7 populations of <em>M. transsilvanica</em> and 24 plants from 2 populations of <em>M. ciliata</em>, collected in Poland and outside it, were analyzed. Using 294 AFLP fragments from 3 primer combinations, accessions were grouped into two major clusters associating with <em>M. ciliata</em> and <em>M. transsilvanica</em>, respectively. Further, two subclusters, corresponding to the samples collected from the Pieniny Mts and from the Kraków - Częstochowa Upland were clearly distinguished within the <em>M. transsilvanica</em> group. The hierarchical AMOVA exhibited significant genetic distinction between these geographic regions (60.89%, p &lt; 0.001). The obtained results showed that the most genetic diversity resided between the populations of <em>M. transsilvanica</em> (86.03%) while considerably lower genetic variation was found within the populations (13.97%), which is consistent with the results reported for self-plants. The low level of AFLP genetic variation of <em>M. transsilvanica</em> can be caused by the geographic isolation of populations, which preserves the dominant self-mating breeding system of the species. Individual populations of <em>M. transsilvanica</em> are characterized by isolated gene pools differing by a small number of loci.


Sign in / Sign up

Export Citation Format

Share Document