scholarly journals Effect of increased copper ion content in the medium on the regeneration of androgenetic embryos of carrot (Daucus carota L.)

2012 ◽  
Vol 65 (2) ◽  
pp. 73-82 ◽  
Author(s):  
Urszula Kowalska ◽  
Katarzyna Szafrańska ◽  
Dorota Krzyżanowska ◽  
Waldemar Kiszczak ◽  
Ryszard Górecki ◽  
...  

The study was conducted to determine the effect of elevated concentrations of copper in the medium on the regeneration of androgenetic embryos of the carrot cultivar ‘Kazan F<sub>1</sub>’ obtained in anther cultures and to determine the level of soluble phenols produced in the regenerates under copper stress. Green embryos were laid out on 4 regeneration media based on B5 medium (G a m b o r g et al. 1968) without hormones, containing 0.1 – control, 1, 10, and 100 μM CuSO<sub>4</sub>×5H<sub>2</sub>O. The plant material was passaged 3 times, after 4, 9 and 15 weeks. During these passages the emerging structures were examined; they were classified in terms of growth and development <i>in vitro</i>, weighed and counted. The levels of soluble phenols in the freeze-dried regenerates were determined. The elevated concentrations of copper in the regeneration media affected positively the formation of complete plants (rooted rosettes) and secondary embryos during the first 4 weeks of culture. After a longer regeneration time (9, 15 weeks), the elevated concentrations of copper caused negative effects: deformation of rosettes. After 15 weeks, the number of rooted rosettes decreased. The 9-week culture subjected to copper stress brought about an increase in the amounts of soluble phenols. The highest values were recorded in the rosettes treated with 10 μM CuSO<sub>4</sub>. Prolonged exposure to media containing elevated concentrations of CuSO<sub>4</sub> caused a reduction in the accumulation of phenolic compounds in the rosettes.

Author(s):  
D. A. Begimbetova ◽  
D. M. Baiskhanova ◽  
B. T. Matkarimov ◽  
Z. T. Shulgau

In recent years, there has been a massive distribution of mobile phones and Wi-Fi networks. In this regard, concerns about their potential effects on living organisms, including humans, are increasing. Despite earlier assumptions about the absence of harmful effects of short-term exposure to radio frequency electromagnetic fields emitted by mobile phones and Wi-Fi networks, there is now increasing evidence of the potentially harmful effects of electromagnetic fields on the human body through the induction of oxidative stress and damage to DNA structure. It is assumed that prolonged exposure to electromagnetic fields can cause the development of various pathological conditions in the human body, including oncological diseases, impaired cognitive functions and sleep, etc. This review analyzes and summarizes existing studies indicating various negative effects of radio frequency electromagnetic fields on human and animal cells. Since there is a large amount of conflicting data on the effect of electromagnetic fields on the human body, only further research can provide an answer to the possible negative effects of mobile phones and Wi-Fi networks usage.


Author(s):  
N.K.R. Smith ◽  
K.E. Hunter ◽  
P. Mobley ◽  
L.P. Felpel

Electron probe energy dispersive x-ray microanalysis (XRMA) offers a powerful tool for the determination of intracellular elemental content of biological tissue. However, preparation of the tissue specimen , particularly excitable central nervous system (CNS) tissue , for XRMA is rather difficult, as dissection of a sample from the intact organism frequently results in artefacts in elemental distribution. To circumvent the problems inherent in the in vivo preparation, we turned to an in vitro preparation of astrocytes grown in tissue culture. However, preparations of in vitro samples offer a new and unique set of problems. Generally, cultured cells, growing in monolayer, must be harvested by either mechanical or enzymatic procedures, resulting in variable degrees of damage to the cells and compromised intracel1ular elemental distribution. The ultimate objective is to process and analyze unperturbed cells. With the objective of sparing others from some of the same efforts, we are reporting the considerable difficulties we have encountered in attempting to prepare astrocytes for XRMA.Tissue cultures of astrocytes from newborn C57 mice or Sprague Dawley rats were prepared and cultured by standard techniques, usually in T25 flasks, except as noted differently on Cytodex beads or on gelatin. After different preparative procedures, all samples were frozen on brass pins in liquid propane, stored in liquid nitrogen, cryosectioned (0.1 μm), freeze dried, and microanalyzed as previously reported.


2020 ◽  
Vol 62 ◽  
pp. 85-90
Author(s):  
L. V. Tashmatova ◽  
O. V. Matsneva ◽  
T. M. Khromova ◽  
V. V. Shakhov

The article presents methods of experimental polyploidy of fruit, berry and ornamental plants. The purpose of this review is to highlight the problems and prospects of polyploidization of plants in the open ground and in vitro culture and the possibility of their application for apple trees. For the purpose of obtaining apple tetraploids as donors of diploid gametes, seed seedlings were treated with a solution of colchicine in concentrations of 0.1-0.4 % for 24 and 48 hours. Colchicine concentrations of 0.3 % and 0.4 % at 48 hours of treatment had a detrimental eff ect on their development. As a result, tetraploids and chimeras were obtained from seeds from free pollination of the varieties Orlik, Svezhest, Kandil Orlovsky, as well as from seeds obtained from crossing the varieties Svezhest×Bolotovskoe, Moskovskoe Оzherel’e×Imrus, Girlyanda×Venyaminovskoe. The optimal concentration of colchicine was 0.1 %. Methods of colchicine treatment have been studied: 1) adding to the nutrient medium, colchicine concentration: 0.01%, 0.02%, exposure time 24h-19 days; 2) applying amitotic solution to the growth point, colchicine concentration: 0.1 %, 0.2 %, exposure time 24h-7 days. To increase the penetration of colchicine through the cell walls, a 0.1 % dimexide solution was used. Studies have shown that high concentrations and prolonged exposure to colchicine reduce the viability of explants.


2020 ◽  
Vol 17 (3) ◽  
pp. 207-217
Author(s):  
Eman A. Hakeem ◽  
Galal M. El-Mahrouk ◽  
Ghada Abdelbary ◽  
Mahmoud H. Teaima

Background: Clopidogrel (CLP) suffers from extensive first pass metabolism results in a negative impact on its oral systemic bioavailability. Cubosomes are Lyotropic Liquid Crystalline (LLC) nano-systems comprising monoolein, a steric stabilizer and an aqueous system, it considered a promising carrier for different pharmaceutical compounds. Box-Behnken Design (BBD) is an efficient tool for process analysis and optimization skipping forceful treatment combinations. Objective: The study was designed to develop freeze-dried clopidogrel loaded LLC (cubosomes) for enhancement of its oral bioavailability. Methods: A 33 BBD was adopted, the studied independent factors were glyceryl monooleate (GMO lipid phase), Pluronic F127 (PL F127steric stabilizer) and polyvinyl alcohol powder (stabilizer). Particle Size (PS), Polydispersity Index (PDI) and Zeta Potential (ZP) were set as independent response variables. Seventeen formulae were prepared in accordance with the bottom up approach and in-vitro evaluated regarding PS, PDI and ZP. Statistical analysis and optimization were achieved using design expert software®, then the optimum suggested formula was prepared, in-vitro revaluated, freeze-dried with 3% mannitol (cryoprotectant), solid state characterized and finally packed in hard gelatin capsule for comparative in-vitro release and in-vivo evaluation to Plavix®. Results: Results of statistical analysis of each individual response revealed a quadratic model for PS and PDI where a linear model for ZP. The optimum suggested formula with desirability factor equal 0.990 consisting of (200 mg GMO, 78.15 mg PL F127 and 2% PVA). LC/MS/MS study confirmed significant higher C>max, AUC>0-24h and AUC>0-∞ than that of Plavix®. Conclusion: The results confirm the capability of developed carrier to overcome the low oral bioavailability.


2020 ◽  
Vol 18 (2) ◽  
pp. 148-157 ◽  
Author(s):  
Triantafyllos Didangelos ◽  
Konstantinos Kantartzis

The cardiac effects of exogenously administered insulin for the treatment of diabetes (DM) have recently attracted much attention. In particular, it has been questioned whether insulin is the appropriate treatment for patients with type 2 diabetes mellitus and heart failure. While several old and some new studies suggested that insulin treatment has beneficial effects on the heart, recent observational studies indicate associations of insulin treatment with an increased risk of developing or worsening of pre-existing heart failure and higher mortality rates. However, there is actually little evidence that the associations of insulin administration with any adverse outcomes are causal. On the other hand, insulin clearly causes weight gain and may also cause serious episodes of hypoglycemia. Moreover, excess of insulin (hyperinsulinemia), as often seen with the use of injected insulin, seems to predispose to inflammation, hypertension, dyslipidemia, atherosclerosis, heart failure, and arrhythmias. Nevertheless, it should be stressed that most of the data concerning the effects of insulin on cardiac function derive from in vitro studies with isolated animal hearts. Therefore, the relevance of the findings of such studies for humans should be considered with caution. In the present review, we summarize the existing data about the potential positive and negative effects of insulin on the heart and attempt to answer the question whether any adverse effects of insulin or the consequences of hyperglycemia are more important and may provide a better explanation of the close association of DM with heart failure.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 845
Author(s):  
Candace Goodman ◽  
Katrina N. Lyon ◽  
Aitana Scotto ◽  
Cyra Smith ◽  
Thomas A. Sebrell ◽  
...  

Helicobacter pylori infection is commonly treated with a combination of antibiotics and proton pump inhibitors. However, since H. pylori is becoming increasingly resistant to standard antibiotic regimens, novel treatment strategies are needed. Previous studies have demonstrated that black and red berries may have antibacterial properties. Therefore, we analyzed the antibacterial effects of black and red raspberries and blackberries on H. pylori. Freeze-dried powders and organic extracts from black and red raspberries and blackberries were prepared, and high-performance liquid chromatography was used to measure the concentrations of anthocyanins, which are considered the major active ingredients. To monitor antibiotic effects of the berry preparations on H. pylori, a high-throughput metabolic growth assay based on the Biolog system was developed and validated with the antibiotic metronidazole. Biocompatibility was analyzed using human gastric organoids. All berry preparations tested had significant bactericidal effects in vitro, with MIC90 values ranging from 0.49 to 4.17%. Antimicrobial activity was higher for extracts than powders and appeared to be independent of the anthocyanin concentration. Importantly, human gastric epithelial cell viability was not negatively impacted by black raspberry extract applied at the concentration required for complete bacterial growth inhibition. Our data suggest that black and red raspberry and blackberry extracts may have potential applications in the treatment and prevention of H. pylori infection but differ widely in their MICs. Moreover, we demonstrate that the Biolog metabolic assay is suitable for high-throughput antimicrobial susceptibility screening of H. pylori.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Johana Muchová ◽  
Vanessa Hearnden ◽  
Lenka Michlovská ◽  
Lucie Vištejnová ◽  
Anna Zavaďáková ◽  
...  

AbstractIn a biological system, nanoparticles (NPs) may interact with biomolecules. Specifically, the adsorption of proteins on the nanoparticle surface may influence both the nanoparticles' and proteins' overall bio-reactivity. Nevertheless, our knowledge of the biocompatibility and risk of exposure to nanomaterials is limited. Here, in vitro and ex ovo biocompatibility of naturally based crosslinked freeze-dried 3D porous collagen/chitosan scaffolds, modified with thermostable fibroblast growth factor 2 (FGF2-STAB®), to enhance healing and selenium nanoparticles (SeNPs) to provide antibacterial activity, were evaluated. Biocompatibility and cytotoxicity were tested in vitro using normal human dermal fibroblasts (NHDF) with scaffolds and SeNPs and FGF2-STAB® solutions. Metabolic activity assays indicated an antagonistic effect of SeNPs and FGF2-STAB® at high concentrations of SeNPs. The half-maximal inhibitory concentration (IC50) of SeNPs for NHDF was 18.9 µg/ml and IC80 was 5.6 µg/ml. The angiogenic properties of the scaffolds were monitored ex ovo using a chick chorioallantoic membrane (CAM) assay and the cytotoxicity of SeNPs over IC80 value was confirmed. Furthermore, the positive effect of FGF2-STAB® at very low concentrations (0.01 µg/ml) on NHDF metabolic activity was observed. Based on detailed in vitro testing, the optimal concentrations of additives in the scaffolds were determined, specifically 1 µg/ml of FGF2-STAB® and 1 µg/ml of SeNPs. The scaffolds were further subjected to antimicrobial tests, where an increase in selenium concentration in the collagen/chitosan scaffolds increased the antibacterial activity. This work highlights the antimicrobial ability and biocompatibility of newly developed crosslinked collagen/chitosan scaffolds involving FGF2-STAB® and SeNPs. Moreover, we suggest that these sponges could be used as scaffolds for growing cells in systems with low mechanical loading in tissue engineering, especially in dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration. Due to their antimicrobial properties, these scaffolds are also highly promising for tissue replacement requiring the prevention of infection.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 49-50
Author(s):  
Kevin S Jerez Bogota ◽  
Tofuko A Woyengo

Abstract A study was conducted to determine the effects of the period of predigesting whole stillage (WS; slurry material that is dried into DDGS) with multi-enzyme and composition of the multi-enzyme on porcine in vitro digestibility of dry matter (IVDDM) of the WS. Four samples of whole stillage from 4 different sources were freeze-dried and divided into 13 subsamples to give 52 sub-samples. Thirteen treatments were applied to the 48 sub-samples within source. The treatments were undigested WS (control); or pre-digested with 1 of 3 multi-enzymes (MTE1, MTE2, and MTE3) at 55 °C for 6, 12, 18 or 24 h in 3 × 4 factorial arrangement. The MTE1 contained xylanase, β-glucanase, cellulase, mannanase, protease, and amylase; MTE2 contained xylanase, α-galactosidase, and cellulase; and MTE3 contained xylanase, cellulase, β-glucanase, and mannanase. The 52 subsamples were subjected to porcine in vitro digestion. The IVDDM of untreated WS was 73.3%. The IVDDM increased (P&lt; 0.05) with an increase in the predigestion period. However, a rise in the predigestion period from 0 to 12 h resulted in greater (P&lt; 0.05) response in mean IVDDM than an increment in the predigestion period from 12 to 24 h (11 vs. 0.83 percentage points). Predigestion period and multi-enzyme type interacted on IVDDM such that the improvement in IVDDM between 0 and 12 hours of predigestion differed (P&lt; 0.05) among the 3 multi-enzyme types (13.3, 11.1, and 8.5 percentage points for MTE3, MTE2, and MTE1, respectively). The LS means by multi-enzyme treatment were modeled and resulted in unparallel curves (P&lt; 0.05). The estimated maximum response of IVDDM for MTE1, MTE2 and MTE 3 were 82.4%, 84.7% and 87.1% at 15.8, 13 and 13.1 hours, respectively. In conclusion, the optimal time of predigestion of WS with multi-enzymes (with regard to improvement in its IVDDM) was approximately 14 h.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 857
Author(s):  
Lasni Samalka Kumarasinghe ◽  
Neethu Ninan ◽  
Panthihage Ruvini Lakshika Dabare ◽  
Alex Cavallaro ◽  
Esma J. Doğramacı ◽  
...  

The metal ion release characteristics and biocompatibility of meta-based materials are key factors that influence their use in orthodontics. Although stainless steel-based alloys have gained much interest and use due to their mechanical properties and cost, they are prone to localised attack after prolonged exposure to the hostile oral environment. Metal ions may induce cellular toxicity at high dosages. To circumvent these issues, orthodontic brackets were coated with a functional nano-thin layer of plasma polymer and further immobilised with enantiomers of tryptophan. Analysis of the physicochemical properties confirmed the presence of functional coatings on the surface of the brackets. The quantification of metal ion release using mass spectrometry proved that plasma functionalisation could minimise metal ion release from orthodontic brackets. Furthermore, the biocompatibility of the brackets has been improved after functionalisation. These findings demonstrate that plasma polymer facilitated surface functionalisation of orthodontic brackets is a promising approach to reducing metal toxicity without impacting their bulk properties.


Sign in / Sign up

Export Citation Format

Share Document