scholarly journals STUDY OF DEGRADATION AND GRANULAR FLOW PROCESSES USING X-RAY IMAGING

Author(s):  
Laurent Babout ◽  
Krzysztof Grudzień ◽  
Marcin Janaszewski ◽  
Łukasz Jopek

This paper reviews the work that has been done in the past 10 years at the Lodz University of technology about the visualization and the quantification of phenomena related to degradation processes (i.e. stress corrosion cracking in stainless steel, fatigue crack in titanium alloys) in engineering materials as well as granular flow in silos using X-ray imaging (i.e. radiography and (micro)tomography). Besides presenting the experimental protocols, the paper also presents the image processing strategies that have been applied to enable the extraction of characteristic parameters from the volumetric images.

2015 ◽  
Vol 22 (6) ◽  
pp. 1531-1539 ◽  
Author(s):  
A. K. Agrawal ◽  
B. Singh ◽  
Y. S. Kashyap ◽  
M. Shukla ◽  
P. S. Sarkar ◽  
...  

A full-field hard X-ray imaging beamline (BL-4) was designed, developed, installed and commissioned recently at the Indus-2 synchrotron radiation source at RRCAT, Indore, India. The bending-magnet beamline is operated in monochromatic and white beam mode. A variety of imaging techniques are implemented such as high-resolution radiography, propagation- and analyzer-based phase contrast imaging, real-time imaging, absorption and phase contrast tomographyetc. First experiments on propagation-based phase contrast imaging and micro-tomography are reported.


2014 ◽  
Vol 9 (06) ◽  
pp. C06001-C06001 ◽  
Author(s):  
K Desjardins ◽  
M Bordessoule ◽  
C Petrache ◽  
C Menneglier ◽  
D Dallé ◽  
...  

Author(s):  
Roopa Kumari ◽  
Neena Gupta ◽  
Narender Kumar

Covid-19, a disease that originated in the Chinese city of Wuhan, has spread across almost the entire globe. Pneumonia, which infects the lungs, is one of the symptoms of this disease. In the past X-ray images were used to segment various diseases such as pneumonia, tuberculosis, or lung cancer. Recent studies showed that Covid-19 affects the lungs. As a result, an X-ray imaging could help to detect and diagnose Covid-19 infection. This study presents a novel hybrid algorithm (CHDPSOK) for segmenting a Covid-19 infected X-ray image. To find Covid-19 contamination in the lungs, we use a segmentation-based approach using K-means and Dynamic PSO algorithm. In the present paper, segmentation of infected regions in the X-ray image uses a cumulative histogram to initialize the population of the PSO algorithm. In a dynamic PSO algorithm, the velocity of the particle changes dynamically which is useful to avoid the local minima. K-means is used to change the position of the particle dynamically for better convergence. To validate the segmentation performance of our algorithm, we used the Kaggle dataset in our experiments. The performance of the proposed method is analyzed both qualitatively and quantitatively. The results explicitly demonstrate the outperformance of the proposed algorithm.


2016 ◽  
Author(s):  
Alexander Immel ◽  
Adeline Le Cabec ◽  
Marion Bonazzi ◽  
Alexander Herbig ◽  
Heiko Temming ◽  
...  

AbstractSub-fossilised remains may still contain highly degraded ancient DNA (aDNA) useful for palaeogenetic investigations. Whether X-ray computed [micro-] tomography ([μ]CT) imaging of these fossils may further damage aDNA remains debated. Although the effect of X-ray on DNA in living organisms is well documented, its impact on aDNA molecules is unexplored.Here we investigate the effects of synchrotron X-ray irradiation on aDNA from Pleistocene bones. A clear correlation appears between decreasing aDNA quantities and accumulating X-ray dose-levels above 2000 Gray (Gy). We further find that strong X-ray irradiation reduces the amount of nucleotide misincorporations at the aDNA molecule ends. No representative effect can be detected for doses below 200 Gy. Dosimetry shows that conventional μCT usually does not reach the risky dose level, while classical synchrotron imaging can degrade aDNA significantly. Optimised synchrotron protocols and simple rules introduced here are sufficient to ensure that fossils can be scanned without impairing future aDNA studies.


2017 ◽  
Vol 24 (6) ◽  
pp. 1237-1249 ◽  
Author(s):  
Marco Voltolini ◽  
Abdelmoula Haboub ◽  
Shan Dou ◽  
Tae-Hyuk Kwon ◽  
Alastair A. MacDowell ◽  
...  

Continuous improvements at X-ray imaging beamlines at synchrotron light sources have made dynamic synchrotron X-ray micro-computed tomography (SXR-µCT) experiments more routinely available to users, with a rapid increase in demand given its tremendous potential in very diverse areas. In this work a survey of five different four-dimensional SXR-µCT experiments is presented, examining five different parameters linked to the evolution of the investigated system, and tackling problems in different areas in earth sciences. SXR-µCT is used to monitor the microstructural evolution of the investigated sample with the following variables: (i) high temperature, observingin situoil shale pyrolysis; (ii) low temperature, replicating the generation of permafrost; (iii) high pressure, to study the invasion of supercritical CO2in deep aquifers; (iv) uniaxial stress, to monitor the closure of a fracture filled with proppant, in shale; (v) reactive flow, to observe the evolution of the hydraulic properties in a porous rock subject to dissolution. For each of these examples, it is shown how dynamic SXR-µCT was able to provide new answers to questions related to climate and energy studies, highlighting the significant opportunities opened recently by the technique.


2010 ◽  
Vol 654-656 ◽  
pp. 2322-2325 ◽  
Author(s):  
Sheridan Mayo ◽  
Andrew Stevenson ◽  
Stephen Wilkins ◽  
Da Chao Gao ◽  
Steven Mookhoek ◽  
...  

X-ray phase-contrast imaging and tomography add an additional dimension to conventional x-ray methods by exploiting the x-ray refraction effects in addition to x-ray absorption in forming an image. This greatly enhances the visibility of edges, voids and boundaries within a sample. It also makes it possible to characterise weakly x-ray absorbing samples which would produce little or no contrast in conventional x-ray imaging. Here we described the application of a laboratory-based x-ray phase-contrast microscope to x-ray micro-tomography of a self-healing polymer system and the quantitative analysis of the resulting three dimensional (3D) datasets to better understand the healing and ageing processes.


2021 ◽  
Vol 28 (5) ◽  
pp. 1639-1648
Author(s):  
Ashish K. Agrawal ◽  
Balwant Singh ◽  
Payal Singhai ◽  
Yogesh Kashyap ◽  
Mayank Shukla

The high flux density of synchrotron white beam offers several advantages in X-ray imaging such as higher resolution and signal-to-noise ratio in 3D/4D micro-tomography, higher frame rate in real-time imaging of transient phenomena, and higher penetration in thick and dense materials especially at higher energies. However, these advantages come with additional challenges to beamline optics, camera and sample due to increased heat load and radiation damage, and to personal safety due to higher radiation dose and ozone gas hazards. In this work, a white beam imaging facility at imaging beamline BL-4, Indus-2, has been developed, while taking care of various instrumental and personal safety challenges. The facility has been tested to achieve 1.5 µm spatial resolution, increased penetration depth up to 900 µm in steel, and high temporal resolutions of ∼10 ms (region of interest 2048 × 2048 pixels) and 70 µs (256 × 2048 pixels). The facility is being used successfully for X-ray imaging, non-destructive testing and dosimetry experiments.


2013 ◽  
Vol 21 (2) ◽  
pp. 10-15 ◽  
Author(s):  
Arno P. Merkle ◽  
Jeff Gelb

X rays are universally valued for their ability to penetrate opaque objects. It is only within the past few decades that their short wavelengths have also been exploited to provide 3D imaging of the objects' interiors with resolution well beyond that of light microscopy (LM) in a wide variety of applications. This article explores X-ray imaging as a quantitative sub-micron nanoscale microscopy technique, and specifically its emergent role within the context of the central microscopy laboratory.


2022 ◽  
Author(s):  
Aleksey V. Smirnov ◽  
Dmitriy S. Semenov ◽  
Ekaterina S. Ahkmad ◽  
Anna N. Khoruzhaya ◽  
Sergey Aleksandrovich Kruchinin

Diagnostic studies carried out using any medical equipment require comprehensive control, which is provided by a number of regulatory documents. Particular attention is paid to X-ray imaging methods, but in the field of magnetic resonance imaging (MRI), one can notice both the lack of this attention and the multidirectional efforts to normalize. This is understandable - this diagnostic method is not based on the use of ionizing radiation, and although magnetic fields have some effect on human health, especially on personnel who work in MRI rooms all the time, they are safe for patients who come to the diagnostic procedure from time to time. time and do not have in their body foreign metal (steel implants) or electronic (pacemakers, neurostimulators) objects. However, ignorance and non-compliance with both advisory and mandatory requirements can significantly increase the risk of harm to patients or staff, as well as lead to a decrease in the quality of imaging and diagnostics. A separate feature of the field of MRI regulation is that over the past decades, more than a dozen different standards, sanitary norms, rules, letters and recommendations have been published or revised, a significant part of which complement or duplicate each other, or completely contradict each other. As a result, the need to ensure compliance of the MRI room / department with the requirements of regulatory documents is greatly complicated. This paper provides an overview of the regulatory documentation in force in Russia related to the organization and functioning of an MRI room / department, highlights the aspects that are most important from the point of view of safe and high-quality operation, and formulates the steps necessary to modernize the system, both from the point of view of the quality of diagnostics. and the safety of MRI studies.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Sign in / Sign up

Export Citation Format

Share Document