A NEW CONTRIBUTION IN STOCHASTIC HYDRODYNAMIC LUBRICATION FOR ARBITRARY BIO-SURFACES

Tribologia ◽  
2020 ◽  
Vol 291 (3) ◽  
pp. 63-76
Author(s):  
Krzysztof Wierzcholski ◽  
Ryszard Maciołek

This paper shows a recent progress described in curvilinear, orthogonal coordinates of the method of estimation of stochastic bio-hydrodynamic lubrication parameters. Here are discussed real arbitrary movable, non-rotational living biological surfaces coated with phospholipid bi-layers and lubricated with biological liquids. Non-rotational, curvilinear cooperating biological surfaces take the place in various biological nods for example in sacra bone, femoral bone, knee cap, calf bone and hip joint, elbow joint, knee joint, jump joint. Moreover are assumed biological non-rotational friction nods between human skin and tightly sport dress lubricated with the sweat. The main focus of the paper was to demonstrate the influence of expected values variations and standard deviation of the human joint gap height on the hydrodynamic lubrication parameters occurring during the friction process. It is very important to notice that the random gap height variations imply on the apparent dynamic viscosity of biological fluid or synovial fluid.

2020 ◽  
Vol 03 (02) ◽  
pp. 1-1
Author(s):  
Krzysztof Wierzcholski ◽  

This paper aims to highlight the result of a new progression of mathematical estimation methods of stochastic bio-hydrodynamic lubrication parameters for arbitrary, curvilinear, non-rotational, co-operating, living biological surfaces coated with phospholipid bi-layers. Movable, non-rotational, co-operating surfaces occur in various biological friction nods like the collar bone, the blade bone, the jump joint, and the wrist joint. Specifically, the author presents a synthetic and comprehensive estimation of stochastic bio-hydrodynamic lubrication parameters for co-operating, rotational cartilage bio-surfaces with phospholipid bi-layers occurring in human spherical hip joints and cylindrical elbow joints. The method of research discussed in this paper focuses on a review of stochastic analytical considerations performed by the author. This research is based on the measurements of the gap height between two movable, non-rotational bio-surfaces. The gap is restricted between two co-operating biological surfaces. After several experiments, it could be inferred that there are symmetric as well as asymmetric random increments and decrements in the gap height. Such changes are applicable to the hydrodynamic pressure, load-carrying capacity, friction forces, and wear of the co-operating biological surfaces in human friction nods and contacts. The prime purpose of this paper is to demonstrate the influence of variations in the expected values and standard deviation of the gap height on the hydrodynamic lubrication parameters that occur during the friction process. It can thus be concluded that the apparent dynamic viscosity of biological lubricant varies in the ultra-thin gap height direction, depending on the susceptibility of the superficial layer of the lubricated bio-surface. The results presented in this paper are obtained considering the 3D variations in the dynamic viscosity of the biological fluid, particularly the random variations crosswise the film thickness in non-Newtonian biological fluid properties.


Tribologia ◽  
2019 ◽  
Vol 284 (2) ◽  
pp. 131-142
Author(s):  
Krzysztof Wierzcholski

The paper presented concerns a new mathematical form of the stochastic theory of hydrodynamic friction forces occurring on real human hip joint surfaces with a phospholipids bilayer. This paper particularly presents a new review of stochastic analytical considerations realized by the authors for friction forces estimation during hydrodynamic lubrication of biological surfaces performed on the basis of the gap height measurements in the human hip joint. After numerous experimental measurements, it directly follows that the random unsymmetrical increments and decrements of the gap height of human joints have an important influence on the load carrying capacities and finally on the friction forces and wear of cooperating cartilage surfaces. The main topic demonstrates the impact of the variations of expectancy values and the standard deviation of the human joint gap height on the friction forces occurring in the human joint. Moreover, an evident connection is observed between the apparent dynamic viscosity and the features of the cartilage surface coated by the phospholipid cells. Hence, after the abovementioned remarks, follows the corollary that the influence of the gap height stochastic variations and random surfaces coated by the PL cells tend indirectly from the apparent viscosity into the friction force variations. The synthetic, complex elaborations of the results obtained indicate the influence of the random roughness and stochastic growth of living biological cartilage surfaces on the friction forces distribution.


2021 ◽  
pp. 53-56
Author(s):  

The main contours of the bearing surfaces of friction pairs with hydrodynamic lubrication are considered. Analysis of tabular data and graphs obtained by experimental methods made it possible to establish additional parameters of influence on the hydrodynamic characteristics of the friction process and the operational characteristics of tribological systems, in a wide range of load-speed modes. Keywords: sliding bearing, hydrodynamics, bushing, bearing surface, profile, circle, ellipse, wavy contour, wear. [email protected]


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 285-291 ◽  
Author(s):  
Krzysztof Wierzcholski ◽  
Andrzej Miszczak

Abstract The topic of the presented paper aims to demonstrate a new principle of hydrodynamic lubrication in mechanical, thermal and electro-magnetic fields. Up till now, when dealing with the hydrodynamic theory lubrication, many authors of scientific papers have assumed the constant oil dynamic viscosity value without variations caused by temperature crosswise the film thickness. Simultaneously, due to the numerous AFM measurements, it appears that oil temperature gradients and oil viscosity changes in the bearing gap height directions cannot be omitted. Therefore, in this paper, the problem of the viscosity changes across the lubricant thin layer was resolved as the main novelty in principles of mechanical thermal lubrication. The method of solving the mentioned problem was manifested by a general model of semi-analytical solutions of isothermal electro-magneto-elastohydro-dynamic and non-Newtonian, lubrication problem formulated for two deformable rotational surfaces in curvilinear, co-ordinates.


2019 ◽  
Vol 26 (2) ◽  
pp. 167-174
Author(s):  
Krzysztof Wierzcholski ◽  
Andrzej Miszczak

Abstract Presented paper concerns a new mathematical form of stochastic theory of hydrodynamic friction forces occurring on the real cooperating surfaces in computer micro bearing fan and computer microbearing in hard disc driver HDD. This paper presents particularly a new-review of stochastic analytical considerations realized by the authors for friction forces estimation during hydrodynamic lubrication performed on the ground of the measurements of the gap height between two roughness surfaces. After numerous experimental measurements directly follows that the random unsymmetrical increments and decrements of the gap height of computer microbearings have important influence on the load carrying capacities and finally on the friction forces and wear of cooperating surfaces. The main topic demonstrates the influence of the variations of expectancy values and standard deviation of the computer microbearing gap height on the friction forces occurring in the HDD and microbearing fan. Moreover, it is observed the evident connection between the apparent dynamic viscosity and the features of the microbearing superficial surface. Hence after abovementioned remarks follows the corollary that the influence of the microbearing gap height stochastic variations connected with the surface roughness tend moreover indirect from the apparent viscosity into the friction forces variations. The synthetic, complex elaboration of obtained results indicates finally the influence of the random roughness in micro and nano level of microbearing surfaces on the friction forces distribution. A new results contained in this paper are obtained taking into account 3D variations of dynamic viscosity of the non-Newtonian lubricant, particularly variations crosswise the film thickness and influences of surface superficial layer features on the lubricant apparent viscosity.


Author(s):  
J. A. Nowell ◽  
J. Pangborn ◽  
W. S. Tyler

Leonardo da Vinci in the 16th century, used injection replica techniques to study internal surfaces of the cerebral ventricles. Developments in replicating media have made it possible for modern morphologists to examine injection replicas of lung and kidney with the scanning electron microscope (SEM). Deeply concave surfaces and interrelationships to tubular structures are difficult to examine with the SEM. Injection replicas convert concavities to convexities and tubes to rods, overcoming these difficulties.Batson's plastic was injected into the renal artery of a horse kidney. Latex was injected into the pulmonary artery and cementex in the trachea of a cat. Following polymerization the tissues were removed by digestion in concentrated HCl. Slices of dog kidney were aldehyde fixed by immersion. Rat lung was aldehyde fixed by perfusion via the trachea at 30 cm H2O. Pieces of tissue 10 x 10 x 2 mm were critical point dried using CO2. Selected areas of replicas and tissues were coated with silver and gold and examined with the SEM.


Author(s):  
B. D. Athey ◽  
A. L. Stout ◽  
M. F. Smith ◽  
J. P. Langmore

Although there is general agreement that Inactive chromosome fibers consist of helically packed nucleosomes, the pattern of packing is still undetermined. Only one of the proposed models, the crossed-linker model, predicts a variable diameter dependent on the length of DNA between nucleosomes. Measurements of the fiber diameter of negatively-stained and frozen- hydrated- chromatin from Thyone sperm (87bp linker) and Necturus erythrocytes (48bp linker) have been previously reported from this laboratory. We now introduce a more reliable method of measuring the diameters of electron images of fibrous objects. The procedure uses a modified version of the computer program TOTAL, which takes a two-dimensional projection of the fiber density (represented by the micrograph itself) and projects it down the fiber axis onto one dimension. We illustrate this method using high contrast, in-focus STEM images of TMV and chromatin from Thyone and Necturus. The measured diameters are in quantitative agreement with the expected values for the crossed-linker model for chromatin structure


Sign in / Sign up

Export Citation Format

Share Document