Large-Scale Production of Basic Commodities at Salinas de los Nueve Cerros, Guatemala

Author(s):  
Brent K. S. Woodfill

Salinas de los Nueve Cerros is a major Pre-Columbian Maya city that grew around the only non-coastal salt source in the Maya lowlands. Residents of the city were able to transform the neighborhoods adjacent to and atop the salt dome into a large-scale production operation with the capacity to produce over 10,000 metric tons of salt a year, which were then distributed throughout the western lowlands via the Chixoy, Pasión, and Usumacinta river networks. By the Late Classic period, the city had expanded into the production and trade of other commodities that were locally produced (including agricultural and pescacultural goods) and traded from farther upriver. Investigations at Nueve Cerros since 2010 have shown that the salt source and basic production was tightly controlled by the local elite—workshops were associated with administrative structures containing the tombs of important individuals—although some phases of production or refining appear to have taken place throughout the site in each of the different neighborhoods under investigation. 

1995 ◽  
Vol 6 ◽  
pp. 119-134 ◽  
Author(s):  
Michael P. Smyth ◽  
Christopher D. Dore ◽  
Hector Neff ◽  
Michael D. Glascock

AbstractThis paper reports results of the first neutron-activation analysis (NAA) of ancient pottery wares and clays from the Puuc region of Yucatan. Based on ceramics from Sayil, this investigation seeks to expand exploration into the nature of commercialization during the Terminal Classic period (A.D. 800–1000). This research sought to: (a) establish the chemical composition of major Puuc wares, (b) begin to define potential raw materials and production loci at Sayil, and (c) explore the question of whether Sayil was a major producer and exporter of ceramic wares. Compositional analysis reveals that three of the four major Puuc wares (Puuc Slate, Puuc Unslipped, and Puuc Red) exhibit some degree of chemical distinctiveness, suggesting discrete production units. Compositional analysis of clays from Sayil and Loltun Cave indicates that Puuc Slate and Puuc Red Ware are compatible with clays locally available at Sayil, supporting local production of these wares, whereas Puuc Unslipped Ware initially appears to be closer compositionally to clays from Loltun. In addition, Puuc Slate is an important ware found throughout northern Yucatan that shows evidence of large-scale production at Sayil. This analysis represents the first steps of a comprehensive investigation into the Maya economy of Terminal Classic Yucatan.


2015 ◽  
Vol 26 (2) ◽  
pp. 162-179 ◽  
Author(s):  
Brent K.S. Woodfill ◽  
Brian Dervin Dillon ◽  
Marc Wolf ◽  
Carlos Avendaño ◽  
Ronald Canter

Salinas de los Nueve Cerros is a precolumbian Maya city located at the base of the highlands in the lowlands of west-central Guatemala. It is the only Classic-period center in the southern Maya Lowlands that based its economy on the production of an important raw material for export: salt. Because of its economic role and its location along a major trade route, Salinas de los Nueve Cerros had a particularly long history of occupation. The site has evidence of a large sedentary population starting during the Middle Preclassic (by ca. 800 B.C.) that continued several hundred years beyond the Classic collapse, before finally being abandoned ca. A.D. 1200. The salt source was located in the center of the city. This presents a rare opportunity to test the degree of elite control over the production of a non-elite resource. Production during the Classic period does appear to have been tightly controlled by elites, as evinced by the presence of multiple administrative structures and elite tombs throughout the salt-working zone, located less than 100 mfrom the site epicenter.


1993 ◽  
Vol 32 (1) ◽  
pp. 129-131
Author(s):  
Naureen Talha

The literature on female labour in Third World countries has become quite extensive. India, being comparatively more advanced industrially, and in view of its size and population, presents a pictures of multiplicity of problems which face the female labour market. However, the author has also included Mexico in this analytical study. It is interesting to see the characteristics of developing industrialisation in two different societies: the Indian society, which is conservative, and the Mexican society, which is progressive. In the first chapter of the book, the author explains that he is not concerned with the process of industrialisation and female labour employed at different levels of work, but that he is interested in forms of production and women's employment in large-scale production, petty commodity production, marginal small production, and self-employment in the informal sector. It is only by analysis of these forms that the picture of females having a lower status is understood in its social and political setting.


2018 ◽  
Vol 15 (4) ◽  
pp. 572-575 ◽  
Author(s):  
Ponnusamy Kannan ◽  
Samuel I.D. Presley ◽  
Pallikondaperumal Shanmugasundaram ◽  
Nagapillai Prakash ◽  
Deivanayagam Easwaramoorthy

Aim and Objective: Itopride is a prokinetic agent used for treating conditions like non-ulcer dyspepsia. Itopride is administered as its hydrochloride salt. Trimethobenzamide is used for treating nausea and vomiting and administered as its hydrochloride salt. The aim is to develop a novel and environmental friendly method for large-scale production of itopride and trimethobenzamide. Materials and Methods: Itopride and trimethobenzamide can be prepared from a common intermediate 4- (dimethylaminoethoxy) benzyl amine. The intermediate is prepared from one pot synthesis using Phyrdroxybenzaldehye and zinc dust and further reaction of the intermediate with substituted methoxy benzoic acid along with boric acid and PEG gives itopride and trimethobenzamide. Results: The intermediate 4-(dimethylaminoethoxy) benzylamine is prepared by treating p-hydroxybenzaldehyde and 2-dimethylaminoethyl chloride. The aldehyde formed is treated with hydroxylamine hydrochloride. The intermediate is confirmed by NMR and the purity is analysed by HPLC. Conclusion: Both itopride and trimethobenzamide were successfully synthesized by this method. The developed method is environmental friendly, economical for large-scale production with good yield and purity.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 241
Author(s):  
Shaden A. M. Khalifa ◽  
Eslam S. Shedid ◽  
Essa M. Saied ◽  
Amir Reza Jassbi ◽  
Fatemeh H. Jamebozorgi ◽  
...  

Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1940
Author(s):  
Muhammad Usman Naseer ◽  
Ants Kallaste ◽  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anton Rassõlkin

This paper presents current research trends and prospects of utilizing additive manufacturing (AM) techniques to manufacture electrical machines. Modern-day machine applications require extraordinary performance parameters such as high power-density, integrated functionalities, improved thermal, mechanical & electromagnetic properties. AM offers a higher degree of design flexibility to achieve these performance parameters, which is impossible to realize through conventional manufacturing techniques. AM has a lot to offer in every aspect of machine fabrication, such that from size/weight reduction to the realization of complex geometric designs. However, some practical limitations of existing AM techniques restrict their utilization in large scale production industry. The introduction of three-dimensional asymmetry in machine design is an aspect that can be exploited most with the prevalent level of research in AM. In order to take one step further towards the enablement of large-scale production of AM-built electrical machines, this paper also discusses some machine types which can best utilize existing developments in the field of AM.


Author(s):  
Yuting Luo ◽  
Zhiyuan Zhang ◽  
Fengning Yang ◽  
Jiong Li ◽  
Zhibo Liu ◽  
...  

Large-scale production of green hydrogen by electrochemical water splitting is considered as a promising technology to address critical energy challenges caused by the extensive use of fossil fuels. Although nonprecious...


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Rozina Rashid ◽  
Muhammad Sohail

AbstractThe capacity of different Bacillus species to produce large amounts of extracellular enzymes and ability to ferment various substrates at a wide range of pH and temperature has placed them among the most promising hosts for the industrial production of many improved and novel products. The global interest in prebiotics, for example, xylooligosaccharides (XOs) is ever increasing, rousing the quest for various forms with expanded productivity. This article provides an overview of xylanase producing bacilli, with more emphasis on their capacity to be used in the production of the XOs, followed by the purification strategies, characteristics and application of XOs from bacilli. The large-scale production of XOs is carried out from a number of xylan-rich lignocellulosic materials by chemical or enzymatic hydrolysis followed by purification through chromatography, vacuum evaporation, solvent extraction or membrane separation methods. Utilization of XOs in the production of functional products as food ingredients brings well-being to individuals by improving defense system and eliminating pathogens. In addition to the effects related to health, a variety of other biological impacts have also been discussed.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1706
Author(s):  
Zacharias Viskadourakis ◽  
Argiri Drymiskianaki ◽  
Vassilis M. Papadakis ◽  
Ioanna Ioannou ◽  
Theodora Kyratsi ◽  
...  

In the current study, polymer-based composites, consisting of Acrylonitrile Butadiene Styrene (ABS) and Bismuth Antimony Telluride (BixSb2−xTe3), were produced using mechanical mixing and hot pressing. These composites were investigated regarding their electrical resistivity and Seebeck coefficient, with respect to Bi doping and BixSb2-xTe3 loading into the composite. Experimental results showed that their thermoelectric performance is comparable—or even superior, in some cases—to reported thermoelectric polymer composites that have been produced using other complex techniques. Consequently, mechanically mixed polymer-based thermoelectric materials could be an efficient method for low-cost and large-scale production of polymer composites for potential thermoelectric applications.


Sign in / Sign up

Export Citation Format

Share Document