scholarly journals Application of Fuzzy Pushdown Automaton on Prediction of Quality Control for Spinning Yarn

2021 ◽  
Vol 50 (1) ◽  
pp. 76-88
Author(s):  
QingE Wu ◽  
Xing Wang ◽  
Zhiwu Chen ◽  
Hu Chen ◽  
Dong Sun ◽  
...  

In order to perform better recognition, tracking and control for fuzzy and uncertain thing, this paper will design a suitable fuzzy pushdown automaton (FPDA) control method to solve the problem. Firstly, the control design structure of FPDA and the decision reasoning rules in control are given. Secondly, the application of FPDA in prediction of quality control for spinning yarn is discussed in the practical problem. Finally, the comparison of FPDA and other control methods on the target control is given. The simulation results show that the control speed and the average precision of designed FPDA are faster by12ms and higher by 4.98% than that of traditional method, which its control precision is 96.87%.

JEMAP ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Albertus Reynaldo Kurniawan ◽  
Bayu Prestianto

Quality control becomes an important key for companies in suppressing the number of defective produced products. Six Sigma is a quality control method that aims to minimize defective products to the lowest point or achieve operational performance with a sigma value of 6 with only yielding 3.4 defective products of 1 million product. Stages of Six Sigma method starts from the DMAIC (Define, Measure, Analyze, Improve and Control) stages that help the company in improving quality and continuous improvement. Based on the results of research on baby clothes products, data in March 2018 the percentage of defective products produced reached 1.4% exceeding 1% tolerance limit, with a Sigma value of 4.14 meaning a possible defect product of 4033.39 opportunities per million products. In the pareto diagram there were 5 types of CTQ (Critical to Quality) such as oblique obras, blobor screen printing, there is a fabric / head cloth code on the final product, hollow fabric / thin fabric fiber, and dirty cloth. The factors caused quality problems such as Manpower, Materials, Environtment, and Machine. Suggestion for consideration of company improvement was continuous improvement on every existing quality problem like in Manpower factor namely improving comprehension, awareness of employees in producing quality product and improve employee's accuracy, Strength Quality Control and give break time. Materials by making the method of cutting the fabric head, the Machine by scheduling machine maintenance and the provision of needle containers at each employees desk sewing and better environtment by installing exhaust fan and renovating the production room.


2013 ◽  
Vol 846-847 ◽  
pp. 313-316 ◽  
Author(s):  
Xiao Yun Zhang

This paper presented a new method based on the Fuzzy self - adaptive PID for BLDCM. This method overcomes some defects of the traditional PID control. Such as lower control precision and worse anti - jamming performance. It dynamic model of BLDCM was built, and then design method for TS fuzzy PID model is given, At last, it compared simulation results of PID control method with TS Fuzzy PID control method. The results show that the TS Fuzzy PID control method has more excellent dynamic antistatic performances, as well as anti-jamming performance. The experiment shows that TS fuzzy PID control has the stronger adaptability robustness and transplant.


Robotica ◽  
2010 ◽  
Vol 29 (3) ◽  
pp. 461-470 ◽  
Author(s):  
Levent Gümüşel ◽  
Nurhan Gürsel Özmen

SUMMARYIn this study, modelling and control of a two-link robot manipulator whose first link is rigid and the second one is flexible is considered for both land and underwater conditions. Governing equations of the systems are derived from Hamilton's Principle and differential eigenvalue problem. A computer program is developed to solve non-linear ordinary differential equations defining the system dynamics by using Runge–Kutta algorithm. The response of the system is evaluated and compared by applying classical control methods; proportional control and proportional + derivative (PD) control and an intelligent technique; integral augmented fuzzy control method. Modelling of drag torques applied to the manipulators moving horizontally under the water is presented. The study confirmed the success of the proposed integral augmented fuzzy control laws as well as classical control methods to drive flexible robots in a wide range of working envelope without overshoot compared to the classical controls.


2017 ◽  
Vol 1 (1) ◽  
pp. 43
Author(s):  
Aulia Kusumawati ◽  
Lailatul Fitriyeni

The main factor to achieve business success in the era of globalization is quality. Quality control is key in maintaining customer loyalty. In the company's production process is still found the resulting product does not comply with the specified specifications. This study aims to determine the value of sigma and factors causing damage to the production process of bagging section For companies with quality control is expected to achieve corporate goals. In this study, the methods used is Six Sigma with define, measure, analyze, improve. Six Sigma result is measurement of company performance baseline at measurement stage that is company at condition 5,1 sigma with DPMO equal to 162,4532. The factors causing the disability of sugar packing are lack of research and skill of the operator, instability of conveyor speeds and jet engine position, machine hygiene condition, lack of weighing machine, and ineffective treatment, and control method.


Robotica ◽  
2005 ◽  
Vol 24 (2) ◽  
pp. 229-237 ◽  
Author(s):  
Jae H. Chung ◽  
Changhoon Kim

This paper discusses the modeling and control of a robotic manipulator with a new deburring tool, which integrates two pneumatic actuators to take advantage of a double cutting action. A coordination control method is developed by decomposing the robotic deburring system into two subsystems; the arm and the deburring tool. A decentralized control approach is pursued, in which suitable controllers were designed for the two subsystems in the coordination scheme. In simulation, three different tool configurations are considered: rigid, single pneumatic and integrated pneumatic tools. A comparative study is performed to investigate the deburring performance of the deburring arm with the different tools. Simulation results show that the developed robotic deburring system significantly improves the accuracy of the deburring operation.


2020 ◽  
Vol 10 (10) ◽  
pp. 3514 ◽  
Author(s):  
Adam Szabo ◽  
Tamas Becsi ◽  
Peter Gaspar

The paper presents the modeling and control design of a floating piston electro-pneumatic gearbox actuator and, moreover, the industrial validation of the controller system. As part of a heavy-duty vehicle, it needs to meet strict and contradictory requirements and units applying the system with different supply pressures in order to operate under various environmental conditions. Because of the high control frequency domain of the real system, post-modern control methods with high computational demands could not be used as they do not meet real-time requirements on automotive level. During the modeling phase, the essential simplifications are shown with the awareness of the trade-off between calculation speed and numerical accuracy to generate a multi-state piecewise-linear system. Two LTI control methods are introduced, i.e., a PD and an Linear-Quadratic Regulators (LQR) solution, in which the continuous control signals are transformed into discrete voltage solenoid commands for the valves. The validation of both the model and the control system are performed on a real physical implementation. The results show that both modeling and control design are suitable for the control tasks using floating piston cylinders and, moreover, these methods can be extended to electro-pneumatic cylinders with different layouts.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xin Gao ◽  
Yifan Wang ◽  
Hanxu Sun ◽  
Qingxuan Jia ◽  
Xiaojian Yang ◽  
...  

The operational reliability of the space manipulator is closely related to the control method. However the existing control methods seldom consider the operational reliability from the system level. A method to construct the operational reliability system control model based on particle filter for the space manipulator is presented in this paper. Firstly, the definition of operational reliability and the degree of operational reliability are given and the state space equations of the control system are established as well. Secondly, based on the particle filter algorithm, a method to estimate the distribution of the end position error and calculate the degree of operational reliability with any form of noise distribution in real time is established. Furthermore, a performance model based on quality loss theory is built and a performance function is obtained to evaluate the quality of the control process. The adjustment value of the end position of the space manipulator can be calculated by using the performance function. Finally, a large number of simulation results show that the control method proposed in this paper can improve the task success rate effectively compared to the simulation results using traditional control methods and control methods based on Bayesian estimation.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 187
Author(s):  
Balázs Németh ◽  
Dániel Fényes ◽  
Zsuzsanna Bede ◽  
Péter Gáspár

This paper proposes enhanced prediction and control design methods for improving traffic flow with human-driven and automated vehicles. To achieve accurate prediction for the entire time horizon, data-driven and model-based prediction methods were integrated. The goal of the integration was to accurately predict the outflow of the traffic network, which was selected as the highway section in this paper. The proposed novel prediction method was used in the optimal design for calculating controlled inflows on highway ramps. The goal of the design was to reach the maximum outflow of the traffic network, even against disturbances on uncontrolled inflows of the network. The control design leads to an optimization problem based on the min–max principle, i.e., the traffic outflow is considered to be maximized by controlled inflows and to be minimized by uncontrolled inflows. The effectiveness of the prediction and the control methods through simulation examples are illustrated, i.e., traffic outflow can be maximized by the control system under various uncontrolled inflow values.


2019 ◽  
Vol 15 ◽  
pp. 117693431986306
Author(s):  
Davide Bolognini ◽  
Roberto Semeraro ◽  
Alberto Magi

Third-generation sequencing using nanopores as biosensors has recently emerged as a strategy capable to overcome next-generation sequencing drawbacks and pitfalls. Assessing the quality of the data produced by nanopore sequencing platforms is essential to decide how useful these may be in making biological discoveries. Here, we briefly contextualized NanoR, a quality control method for nanopore sequencing data we developed, in the scenario of preexistent similar tools. We also illustrated 2 quality control pipelines, readily applicable to nanopore sequencing data, respectively, based on NanoR and PyPore, a second quality control method published by our group.


Sign in / Sign up

Export Citation Format

Share Document