scholarly journals Chaos in overhead travelling cranes load motion

Mechanika ◽  
2019 ◽  
Vol 25 (3) ◽  
pp. 225-230
Author(s):  
Jerzy Margielewicz ◽  
Damian Gąska ◽  
Tadeusz Opasiak ◽  
Tomasz Haniszewski

The paper presents the results of numerical investigations of the overhead travelling cranes load motion. The model studies assumes that the load is suspended on the inextensible rope. Conversely, its motion is triggered by an external moment. In addition, energy losses in the construction node connecting the rope to the drum are included. At the same time these losses were mapped through a linear viscous damper. The main objective was to evaluate the impact of individual mathematical model parameters on the dynamics of the transported load. The results were compared between two models: with/without crane structure vibrations included. The results were illustrated by multi-colored maps of the largest Lyapunov exponent, bifurcation diagrams, and Poincare cross-sections.

Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. E251-E263 ◽  
Author(s):  
Anna Avdeeva ◽  
Dmitry Avdeev ◽  
Marion Jegen

Detecting a salt dome overhang is known to be problematic by seismic methods alone. We used magnetotellurics (MT) as a complementary method to seismics to investigate the detectability of a salt dome overhang. A comparison of MT responses for 3D synthetic salt models with and without overhang shows that MT is very sensitive to shallow salt structures and suggests that it should be possible to detect an overhang. To further investigate the resolution capability of MT for a salt dome overhang, we performed a 3D MT inversion study and investigated the impact of model parametrization and regularization. We showed that using the logarithms of the conductivities as model parameters is crucial for inverting data from resistive salt structures because, in this case, commonly used Tikhonov-type stabilizers work more equally for smoothing the resistive and conductive structures. The use of a logarithmic parametrization also accelerated the convergence and produced better inversion results. When the Laplace operator was used as a regularization functional, we still observed that the inversion algorithm allows spatial resistivity gradients. These spatial gradients are reduced if a regularization based on first derivatives in contrast to the Laplace operator is introduced. To demonstrate the favorable performance when logarithmic parametrization and gradient-based regularization are employed, we first inverted a data set simulated for a simple model of two adjacent blocks. Subsequently, we applied the code to a more realistic salt dome overhang detectability study. The results from the detectability study are encouraging and suggest that 3D MT inversion can be applied to decide whether the overhang is present in the shallow salt structure even in the case when only profile data are available. However, to resolve the overhang, a dense MT site coverage above the flanks of the salt dome is required.


2019 ◽  
Vol 2019 (1) ◽  
pp. 331-338 ◽  
Author(s):  
Jérémie Gerhardt ◽  
Michael E. Miller ◽  
Hyunjin Yoo ◽  
Tara Akhavan

In this paper we discuss a model to estimate the power consumption and lifetime (LT) of an OLED display based on its pixel value and the brightness setting of the screen (scbr). This model is used to illustrate the effect of OLED aging on display color characteristics. Model parameters are based on power consumption measurement of a given display for a number of pixel and scbr combinations. OLED LT is often given for the most stressful display operating situation, i.e. white image at maximum scbr, but having the ability to predict the LT for other configurations can be meaningful to estimate the impact and quality of new image processing algorithms. After explaining our model we present a use case to illustrate how we use it to evaluate the impact of an image processing algorithm for brightness adaptation.


2016 ◽  
pp. 3564-3575 ◽  
Author(s):  
Ara Sergey Avetisyan

The efficiency of virtual cross sections method and MELS (Magneto Elastic Layered Systems) hypotheses application is shown on model problem about distribution of wave field in thin surface layers of waveguide when plane wave signal is propagating in it. The impact of surface non-smoothness on characteristics of propagation of high-frequency horizontally polarized wave signal in isotropic elastic half-space is studied. It is shown that the non-smoothness leads to strong distortion of the wave signal over the waveguide thickness and along wave signal propagation direction as well.  Numerical comparative analysis of change in amplitude and phase characteristics of obtained wave fields against roughness of weakly inhomogeneous surface of homogeneous elastic half-space surface is done by classical method and by proposed approach for different kind of non-smoothness.


2019 ◽  
Vol 34 (32) ◽  
pp. 1950259 ◽  
Author(s):  
S. M. Troshin ◽  
N. E. Tyurin

We comment briefly on relations between the elastic and inelastic cross-sections valid for the shadow and reflective modes of the elastic scattering. Those are based on the unitarity arguments. It is shown that the redistribution of the probabilities of the elastic and inelastic interactions (the form of the inelastic overlap function becomes peripheral) under the reflective scattering mode can lead to increasing ratio of [Formula: see text] at the LHC energies. In the shadow scattering mode, the mechanism of this increase is a different one, since the impact parameter dependence of the inelastic interactions probability is central in this mode. A short notice is also given on the slope parameter and the leading contributions to its energy dependence in both modes.


2008 ◽  
Vol 18 (12) ◽  
pp. 3679-3687 ◽  
Author(s):  
AYDIN A. CECEN ◽  
CAHIT ERKAL

We present a critical remark on the pitfalls of calculating the correlation dimension and the largest Lyapunov exponent from time series data when trend and periodicity exist. We consider a special case where a time series Zi can be expressed as the sum of two subsystems so that Zi = Xi + Yi and at least one of the subsystems is deterministic. We show that if the trend and periodicity are not properly removed, correlation dimension and Lyapunov exponent estimations yield misleading results, which can severely compromise the results of diagnostic tests and model identification. We also establish an analytic relationship between the largest Lyapunov exponents of the subsystems and that of the whole system. In addition, the impact of a periodic parameter perturbation on the Lyapunov exponent for the logistic map and the Lorenz system is discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Zhu ◽  
Blanca Gallego

AbstractEpidemic models are being used by governments to inform public health strategies to reduce the spread of SARS-CoV-2. They simulate potential scenarios by manipulating model parameters that control processes of disease transmission and recovery. However, the validity of these parameters is challenged by the uncertainty of the impact of public health interventions on disease transmission, and the forecasting accuracy of these models is rarely investigated during an outbreak. We fitted a stochastic transmission model on reported cases, recoveries and deaths associated with SARS-CoV-2 infection across 101 countries. The dynamics of disease transmission was represented in terms of the daily effective reproduction number ($$R_t$$ R t ). The relationship between public health interventions and $$R_t$$ R t was explored, firstly using a hierarchical clustering algorithm on initial $$R_t$$ R t patterns, and secondly computing the time-lagged cross correlation among the daily number of policies implemented, $$R_t$$ R t , and daily incidence counts in subsequent months. The impact of updating $$R_t$$ R t every time a prediction is made on the forecasting accuracy of the model was investigated. We identified 5 groups of countries with distinct transmission patterns during the first 6 months of the pandemic. Early adoption of social distancing measures and a shorter gap between interventions were associated with a reduction on the duration of outbreaks. The lagged correlation analysis revealed that increased policy volume was associated with lower future $$R_t$$ R t (75 days lag), while a lower $$R_t$$ R t was associated with lower future policy volume (102 days lag). Lastly, the outbreak prediction accuracy of the model using dynamically updated $$R_t$$ R t produced an average AUROC of 0.72 (0.708, 0.723) compared to 0.56 (0.555, 0.568) when $$R_t$$ R t was kept constant. Monitoring the evolution of $$R_t$$ R t during an epidemic is an important complementary piece of information to reported daily counts, recoveries and deaths, since it provides an early signal of the efficacy of containment measures. Using updated $$R_t$$ R t values produces significantly better predictions of future outbreaks. Our results found variation in the effect of early public health interventions on the evolution of $$R_t$$ R t over time and across countries, which could not be explained solely by the timing and number of the adopted interventions.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 102
Author(s):  
Frauke Kachholz ◽  
Jens Tränckner

Land use changes influence the water balance and often increase surface runoff. The resulting impacts on river flow, water level, and flood should be identified beforehand in the phase of spatial planning. In two consecutive papers, we develop a model-based decision support system for quantifying the hydrological and stream hydraulic impacts of land use changes. Part 1 presents the semi-automatic set-up of physically based hydrological and hydraulic models on the basis of geodata analysis for the current state. Appropriate hydrological model parameters for ungauged catchments are derived by a transfer from a calibrated model. In the regarded lowland river basins, parameters of surface and groundwater inflow turned out to be particularly important. While the calibration delivers very good to good model results for flow (Evol =2.4%, R = 0.84, NSE = 0.84), the model performance is good to satisfactory (Evol = −9.6%, R = 0.88, NSE = 0.59) in a different river system parametrized with the transfer procedure. After transferring the concept to a larger area with various small rivers, the current state is analyzed by running simulations based on statistical rainfall scenarios. Results include watercourse section-specific capacities and excess volumes in case of flooding. The developed approach can relatively quickly generate physically reliable and spatially high-resolution results. Part 2 builds on the data generated in part 1 and presents the subsequent approach to assess hydrologic/hydrodynamic impacts of potential land use changes.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 463
Author(s):  
Gopinathan R. Abhijith ◽  
Leonid Kadinski ◽  
Avi Ostfeld

The formation of bacterial regrowth and disinfection by-products is ubiquitous in chlorinated water distribution systems (WDSs) operated with organic loads. A generic, easy-to-use mechanistic model describing the fundamental processes governing the interrelationship between chlorine, total organic carbon (TOC), and bacteria to analyze the spatiotemporal water quality variations in WDSs was developed using EPANET-MSX. The representation of multispecies reactions was simplified to minimize the interdependent model parameters. The physicochemical/biological processes that cannot be experimentally determined were neglected. The effects of source water characteristics and water residence time on controlling bacterial regrowth and Trihalomethane (THM) formation in two well-tested systems under chlorinated and non-chlorinated conditions were analyzed by applying the model. The results established that a 100% increase in the free chlorine concentration and a 50% reduction in the TOC at the source effectuated a 5.87 log scale decrement in the bacteriological activity at the expense of a 60% increase in THM formation. The sensitivity study showed the impact of the operating conditions and the network characteristics in determining parameter sensitivities to model outputs. The maximum specific growth rate constant for bulk phase bacteria was found to be the most sensitive parameter to the predicted bacterial regrowth.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 387
Author(s):  
Yiting Liang ◽  
Yuanhua Zhang ◽  
Yonggang Li

A mechanistic kinetic model of cobalt–hydrogen electrochemical competition for the cobalt removal process in zinc hydrometallurgical was proposed. In addition, to overcome the parameter estimation difficulties arising from the model nonlinearities and the lack of information on the possible value ranges of parameters to be estimated, a constrained guided parameter estimation scheme was derived based on model equations and experimental data. The proposed model and the parameter estimation scheme have two advantages: (i) The model reflected for the first time the mechanism of the electrochemical competition between cobalt and hydrogen ions in the process of cobalt removal in zinc hydrometallurgy; (ii) The proposed constrained parameter estimation scheme did not depend on the information of the possible value ranges of parameters to be estimated; (iii) the constraint conditions provided in that scheme directly linked the experimental phenomenon metrics to the model parameters thereby providing deeper insights into the model parameters for model users. Numerical experiments showed that the proposed constrained parameter estimation algorithm significantly improved the estimation efficiency. Meanwhile, the proposed cobalt–hydrogen electrochemical competition model allowed for accurate simulation of the impact of hydrogen ions on cobalt removal rate as well as simulation of the trend of hydrogen ion concentration, which would be helpful for the actual cobalt removal process in zinc hydrometallurgy.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Claude Duhr ◽  
Falko Dulat ◽  
Bernhard Mistlberger

Abstract We present the production cross section for a lepton-neutrino pair at the Large Hadron Collider computed at next-to-next-to-next-to-leading order (N3LO) in QCD perturbation theory. We compute the partonic coefficient functions of a virtual W± boson at this order. We then use these analytic functions to study the progression of the perturbative series in different observables. In particular, we investigate the impact of the newly obtained corrections on the inclusive production cross section of W± bosons, as well as on the ratios of the production cross sections for W+, W− and/or a virtual photon. Finally, we present N3LO predictions for the charge asymmetry at the LHC.


Sign in / Sign up

Export Citation Format

Share Document