scholarly journals Survey Based Evaluation of Indoor Environment in an Administrative Military Facility

2020 ◽  
Vol 27 (2) ◽  
pp. 96-107
Author(s):  
Aleksejs Prozuments ◽  
Anatolijs Borodinecs ◽  
Jurgis Zemitis

Military facilities feature distinctive requirements with regards to building technical and structural design, material use and indoor environmental conditions (IEC), as these buildings serve specific purpose and the personnel occupying the premises may wear uniform or protective clothing (administrative staff, special forces, training personnel etc.), that can greatly affect their satisfaction level with thermal comfort and productivity. In order to acquire data on the actual indoor environment conditions and obtain a feedback from the occupying personnel on their satisfaction level with the IEC in an administrative military building situated in a special purpose military compound, a series of IAQ measurements (temperature, humidity, CO2 level) and a survey on indoor air quality and thermal comfort was conducted in different premises of the administrative office building. A total of 73 respondents occupying the building participated in the survey. The results of the conducted survey revealed that there is a high degree of dissatisfaction with the IEC in military buildings, that is attributed to inadequate ventilation and overtemperature. That matched the collected indoor environmental quality (IEQ) data, forming a direct relationship between the poor energy efficiency and low satisfaction rate with IEC. The study reiterates the need to address the poor current technical state of unclassified building stock, emphasizes the call for developing clear regulatory requirements for newly-constructed unclassified buildings and thorough feasibility assessment for renovation projects.    

2019 ◽  
Vol 282 ◽  
pp. 02031
Author(s):  
Ricardo M.S.F. Almeida ◽  
Eva Barreira ◽  
Sandra Soares ◽  
Ramos Nuno M.M. ◽  
Sérgio Lopes ◽  
...  

The importance of a good indoor environment for peoples’ health and wellbeing is nowadays clearly established. Besides enhancing the wellbeing of building occupants and helping decrease the occurrence of building related illness, a good indoor environment can also lead to a decrease in worker complaints and absenteeism. This paper presents the results of a three-month monitoring campaign where the thermal comfort of a toll station was evaluated, including the main room and the cabins. The physical parameters required for the assessment of both global and local thermal comfort were measured and the results were compared with the thermal perception of the occupants, which was collected through questionnaires. The indoor environmental quality in the main room was better than in the cabins and a mismatch between the PMV index and the occupants thermal sensation was identified.


2014 ◽  
Vol 584-586 ◽  
pp. 761-764 ◽  
Author(s):  
Andrey Volkov ◽  
Artem Sedov ◽  
Pavel Chelyshkov ◽  
Ekaterina Kulikova

<p class="p0">Creating a comfortable indoor environment has been one of the mainconcerns when it comes to the design and operation of buildings. Buildings are a crucial part of our daily life, on average people spends 85 % of their time performing activities inside of buildings and therefore the quality of the indoor environment is a critical factor affecting the happiness and productivity of building users.The indoor environmental quality has a strong relationship on the thermal conditions of a space which is directly affected by the amount of heat lost or gained due to the properties of the materials used, the external environmental conditions and the inner sources of heat; In consequence, efforts have to be made to maintain proper thermal conditions by means of using natural and mechanical strategies to provide heating, cooling and ventilation. While the thermal comfort is an important aspect for the average user of a building, it becomes a critical aspect when it comes to population highly sensitive to thermal conditions.</p>


2014 ◽  
Vol 584-586 ◽  
pp. 753-756 ◽  
Author(s):  
Andrey Volkov ◽  
Artem Sedov ◽  
Pavel Chelyshkov ◽  
Ekaterina Kulikova

<p class="p0">Creating a comfortable indoor environment has been one of the mainconcerns when it comes to the design and operation of buildings. Buildings are a crucial part of our daily life, on average people spends 85 % of their time performing activities inside of buildings and therefore the quality of the indoor environment is a critical factor affecting the happiness and productivity of building users.The indoor environmental quality has a strong relationship on the thermal conditions of a space which is directly affected by the amount of heat lost or gained due to the properties of the materials used, the external environmental conditions and the inner sources of heat; In consequence, efforts have to be made to maintain proper thermal conditions by means of using natural and mechanical strategies to provide heating, cooling and ventilation. While the thermal comfort is an important aspect for the average user of a building, it becomes a critical aspect when it comes to population highly sensitive to thermal conditions. Children under and patients in hospitals with low levels of immune system are more likely to feel discomfort under certain operational conditions of ventilation, cooling and heating delivery systems.Particularly in this study have been investigated the thermal comfort and thermal comfort parameters for children, toddlers and hospital patients in three locations during the typical operation of systems in late spring.</p>


2014 ◽  
Vol 584-586 ◽  
pp. 757-760 ◽  
Author(s):  
Andrey Volkov ◽  
Artem Sedov ◽  
Pavel Chelyshkov ◽  
Ekaterina Kulikova

<p class="p0">Creating a comfortable indoor environment has been one of the mainconcerns when it comes to the design and operation of buildings. Buildings are a crucial part of our daily life, on average people spends 85 % of their time performing activities inside of buildings and therefore the quality of the indoor environment is a critical factor affecting the happiness and productivity of building users.The indoor environmental quality has a strong relationship on the thermal conditions of a space which is directly affected by the amount of heat lost or gained due to the properties of the materials used, the external environmental conditions and the inner sources of heat; In consequence, efforts have to be made to maintain proper thermal conditions by means of using natural and mechanical strategies to provide heating, cooling and ventilation. While the thermal comfort is an important aspect for the average user of a building, it becomes a critical aspect when it comes to population highly sensitive to thermal conditions.</p>


2019 ◽  
Vol 111 ◽  
pp. 02011
Author(s):  
Matjaž Prek ◽  
Gorazd Krese ◽  
Žiga Lampret

The influence of dissimilar cooling and ventilation system combinations on indoor environmental quality (IEQ) has been studied. A comparison of chilled ceiling cooling in combination with displacement ventilation, cooling with fan coil unit, and cooling with flat wall displacement inlets was performed. All observed variations were evaluated based on whole-body and local thermal comfort criteria as well as with regard to ventilation effectiveness. The analysis was made based on results of numerical simulations carried out in two steps. First, DesignBuilder was applied to model the buildings’ thermal performance and to evaluate its interaction with the environment. The latter included the calculation of heat gains as well as the heat loss on the boundary surfaces of the observed air-conditioned room. In the second step, ANSYS Fluent was used to simulate the response of indoor environment by utilizing the simulation results obtained in the first step, in order to evaluate the interaction between building and human. Afterwards, the observed thermal comfort and ventilation criteria were merged into a novel indoor environment indicator, which enables to describe the indoor environment quality with a single value. Among the analysed systems, the ceiling cooling system in combination with displacement ventilation was found to be the most suitable as it offers a high level of thermal comfort with adequate ventilation efficiency. Fan coil cooling was the least favourable option in terms of thermal comfort, while flat wall displacement inlets exhibited the lowest ventilation effectiveness. The performed investigation demonstrated the necessity to assess indoor environment with regard to IEQ in addition to energy consumption.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3311
Author(s):  
Víctor Pérez-Andreu ◽  
Carolina Aparicio-Fernández ◽  
José-Luis Vivancos ◽  
Javier Cárcel-Carrasco

The number of buildings renovated following the introduction of European energy-efficiency policy represents a small number of buildings in Spain. So, the main Spanish building stock needs an urgent energy renovation. Using passive strategies is essential, and thermal characterization and predictive tests of the energy-efficiency improvements achieving acceptable levels of comfort for their users are urgently necessary. This study analyzes the energy performance and thermal comfort of the users in a typical Mediterranean dwelling house. A transient simulation has been used to acquire the scope of Spanish standards for its energy rehabilitation, taking into account standard comfort conditions. The work is based on thermal monitoring of the building and a numerical validated model developed in TRNSYS. Energy demands for different models have been calculated considering different passive constructive measures combined with real wind site conditions and the behavior of users related to natural ventilation. This methodology has given us the necessary information to decide the best solution in relation to energy demand and facility of implementation. The thermal comfort for different models is not directly related to energy demand and has allowed checking when and where the measures need to be done.


2021 ◽  
Vol 13 (4) ◽  
pp. 2266
Author(s):  
Valentina Marincioni ◽  
Virginia Gori ◽  
Ernst Jan de Place Hansen ◽  
Daniel Herrera-Avellanosa ◽  
Sara Mauri ◽  
...  

Buildings of heritage significance due to their historical, architectural, or cultural value, here called historic buildings, constitute a large proportion of the building stock in many countries around the world. Improving the performance of such buildings is necessary to lower the carbon emissions of the stock, which generates around 40% of the overall emissions worldwide. In historic buildings, it is estimated that heat loss through external walls contributes significantly to the overall energy consumption, and is associated with poor thermal comfort and indoor air quality. Measures to improve the performance of walls of historic buildings require a balance between energy performance, indoor environmental quality, heritage significance, and technical compatibility. Appropriate wall measures are available, but the correct selection and implementation require an integrated process throughout assessment (planning), design, construction, and use. Despite the available knowledge, decision-makers often have limited access to robust information on tested retrofit measures, hindering the implementation of deep renovation. This paper provides an evidence-based approach on the steps required during assessment, design, and construction, and after retrofitting through a literature review. Moreover, it provides a review of possible measures for wall retrofit within the deep renovation of historic buildings, including their advantages and disadvantages and the required considerations based on context.


2021 ◽  
Vol 13 (8) ◽  
pp. 4563
Author(s):  
Nuno Baía Baía Saraiva ◽  
Luisa Dias Dias Pereira ◽  
Adélio Rodrigues Gaspar ◽  
José Joaquim da Costa

The adaptation of spaces to different usage typologies can be complex in heritage buildings. Facilities were initially planned for a specific type of use that, when changed, require additional measures to ensure a suitable indoor environment. Passive strategies—e.g., free cooling—are commonly used as an alternative without requiring equipment installation. However, its implementation often leads to unsatisfactory conditions. Therefore, it is important to clarify the main barriers to achieving thermal comfort in readapted historic buildings. The present work investigates the thermal comfort conditions reported by workers in office spaces of a historic building in the University of Coimbra. A monitoring campaign was carried out between May and September 2020 to assess indoor conditions’ quality. Due to the current pandemic of COVID-19, offices were not occupied at full capacity. A one-day evaluation of thermal comfort was made using a climate analyzer and six occupants were surveyed on 19 August 2020. The main results highlighted discomfort due to overheating of spaces. The causes were related to the combination of inadequate implementation of the free cooling actions and the building use. Furthermore, it was recommended the installation of HVAC systems in case of full capacity.


2021 ◽  
Vol 11 (14) ◽  
pp. 6254
Author(s):  
Elena G. Dascalaki ◽  
Constantinos A. Balaras

In an effort to reduce the operational cost of their dwellings, occupants may even have to sacrifice their indoor thermal comfort conditions. Following the economic recession in Greece over recent years, homeowners have been forced to adapt their practices by shortening heating hours, lowering the indoor thermostat settings, isolating spaces that are not heated or even turning off their central heating system and using alternative local heating systems. This paper presents the results from over 100 occupant surveys using questionnaires and walk-through energy audits in Hellenic households that documented how occupants operated the heating systems in their dwellings and the resulting indoor thermal comfort conditions and actual energy use. The results indicate that the perceived winter thermal comfort conditions were satisfactory in only half of the dwellings, since the actual operating space heating periods averaged only 5 h (compared with the assumed 18 h in standard conditions), while less than half heated their entire dwellings and only a fifth maintained an indoor setpoint temperature of 20 °C, corresponding to standard comfort conditions. Mainstream energy conservation measures include system maintenance, switching to more efficient systems, reducing heat losses and installing controls. This information is then used to derive empirical adaptation factors for bridging the gap between the calculated and actual energy use, making more realistic estimates of the expected energy savings following building renovations, setting prudent targets for energy efficiency and developing effective plans toward a decarbonized building stock.


2021 ◽  
Vol 11 (11) ◽  
pp. 5108
Author(s):  
María Esther Liébana-Durán ◽  
Begoña Serrano-Lanzarote ◽  
Leticia Ortega-Madrigal

In order to achieve the EU emission reduction goals, it is essential to renovate the building stock, by improving energy efficiency and promoting total decarbonisation. According to the 2018/844/EU Directive, 3% of Public Administration buildings should be renovated every year. So as to identify the measures to be applied in those buildings and obtain the greatest reduction in energy consumption at the lowest cost, the Directive 2010/31/EU proposed a cost-optimisation-based methodology. The implementation of this allowed to carry out studies in detail in actual scenarios for the energy renovation of thermal envelopes of public schools in the city of Valencia. First, primary school buildings were analysed and classified into three representative types. For each type, 21 sets of measures for improving building thermal envelopes were proposed, considering the global cost, in order to learn about the savings obtained, the repayment term for the investment made, the percentage reduction in energy consumption and the level of compliance with regulatory requirements. The result and conclusions will help Public Administration in Valencia to draw up an energy renovation plan for public building schools in the city.


Sign in / Sign up

Export Citation Format

Share Document