Genome Editing in Agriculture

New plant breeding techniques such as CRISPR/Cas have the potential to improve sustainability in agriculture. Genome editing techniques can increase yields while reducing the use of pesticides. Researchers around the world are working on improving the nutritional value of plants. However, whether the new technologies will be used in Europe is uncertain at present. Should genome editing be regulated like the ‘old’ genetic engineering techniques used on plants? What might a responsible interpretation of the precautionary principle look like? The political discussion on the evaluation of new plant breeding technologies is in full swing. The contributions in this anthology present the legal, social and ethical aspects of the topic that were discussed at a summer school of the Institute of Technology-Theology-Natural Sciences (TTN) at Ludwig Maximilian University in Munich. With contributions from Stephan Schleissing; Sebastian Pfeilmeier; Christian Dürnberger; Jarst van Belle; Jan Schaart; Robert van Loo; Katharina Unkel; Thorben Sprink; Aurélie Jouanin; Marinus J.M. Smulders; Hans-Georg Dederer; Brigitte Voigt; Felix Beck; João Otávio Benevides Demasi; Bartosz Bartkowski; Chad M. Baum; Alexander Bogner; Helge Torgersen; Sebastian Schubert; Anne Friederike Hoffmann; Ksenia Gerasimova; Karolina Rucinska

2021 ◽  
Vol 22 (11) ◽  
pp. 5585
Author(s):  
Sajid Fiaz ◽  
Sunny Ahmar ◽  
Sajjad Saeed ◽  
Aamir Riaz ◽  
Freddy Mora-Poblete ◽  
...  

A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.


Traditional plant breeding depends on spontaneous and induced mutations available in the crop plants. Such mutations are rare and occur randomly. By contrast, molecular breeding and genome editing are advanced breeding techniques that can enhance the selection process and produce precisely targeted modifications in any crop. Identification of molecular markers, based on SSRs and SNPs, and the availability of high-throughput (HTP) genotyping platforms have accelerated the process of generating dense genetic linkage maps and thereby enhanced application of marker-assisted breeding for crop improvement. Advanced molecular biology techniques that facilitate precise, efficient, and targeted modifications at genomic loci are termed as “genome editing.” The genome editing tools include “zinc-finger nucleases (ZNFs),” “transcription activator-like effector nucleases (TALENs),” oligonucleotide-directed mutagenesis (ODM), and “clustered regularly interspersed short palindromic repeats (CRISPER/Cas) system,” which can be used for targeted gene editing. Concepts of molecular plant breeding and genome editing systems are presented in this chapter.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Claire Williams ◽  
Savannah Gleim ◽  
Stuart J. Smyth

Abstract Background The broadness of biotechnology serves to connect different types of modern plant breeding techniques with the potential to improve global food security. However, the topic goes beyond the specific example consumers’ associate with the term—genetic modification. As a result, it is often unclear if consumers really know what they claim to understand and the efforts to clarify the science and reasoning behind the use of these practices is often obscured. Methods Two online surveys of 500 Canadians were conducted in 2017. Results Three-quarters of Canadians have high levels of trust in those who provide information about food, yet two-thirds believe that modern plant breeding technologies are unnatural. Conclusions Canadians lack basic knowledge about modern plant breeding practices and technologies and possess high levels of uncertainty regarding the potential for benefits or externalities to develop from the commercialization of new genome editing plant breeding technologies.


Author(s):  
Emine Açar ◽  
Yıldız Aka Kaçar

In order to increase access to nutritious foods around the world, innovative technologies need to be developed and integrated into agricultural production systems. The new plant breeding techniques developed offer many advantages for making modifications in the plant genome. CRSPR/Cas9, one of the genome editing technologies, is an efficient system with high potential that allows the formation of target-oriented mutations in many agricultural products and allows the mutation of new and desired characters to be obtained through breeding programs without the use of foreign genetic elements. In this review, we have summarize the discovery, evalution, functionality, genome editing studies of plants and the strong potentials of CRSPR/Cas9 technology for plant breeding.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1359
Author(s):  
Javaria Tabassum ◽  
Shakeel Ahmad ◽  
Babar Hussain ◽  
Amos Musyoki Mawia ◽  
Aqib Zeb ◽  
...  

Food crop production and quality are two major attributes that ensure food security. Rice is one of the major sources of food that feeds half of the world’s population. Therefore, to feed about 10 billion people by 2050, there is a need to develop high-yielding grain quality of rice varieties, with greater pace. Although conventional and mutation breeding techniques have played a significant role in the development of desired varieties in the past, due to certain limitations, these techniques cannot fulfill the high demands for food in the present era. However, rice production and grain quality can be improved by employing new breeding techniques, such as genome editing tools (GETs), with high efficiency. These tools, including clustered, regularly interspaced short palindromic repeats (CRISPR) systems, have revolutionized rice breeding. The protocol of CRISPR/Cas9 systems technology, and its variants, are the most reliable and efficient, and have been established in rice crops. New GETs, such as CRISPR/Cas12, and base editors, have also been applied to rice to improve it. Recombinases and prime editing tools have the potential to make edits more precisely and efficiently. Briefly, in this review, we discuss advancements made in CRISPR systems, base and prime editors, and their applications, to improve rice grain yield, abiotic stress tolerance, grain quality, disease and herbicide resistance, in addition to the regulatory aspects and risks associated with genetically modified rice plants. We also focus on the limitations and future prospects of GETs to improve rice grain quality.


2021 ◽  
Vol 258-259 ◽  
pp. 153378
Author(s):  
Eugenia M.A. Enfissi ◽  
Margit Drapal ◽  
Laura Perez-Fons ◽  
Marilise Nogueira ◽  
Harriet M. Berry ◽  
...  

2018 ◽  
pp. 605-644
Author(s):  
D. R. Mehta ◽  
A. K. Nandha

2022 ◽  
Vol 23 (2) ◽  
pp. 837
Author(s):  
Sudip Biswas ◽  
Nancy J. Wahl ◽  
Michael J. Thomson ◽  
John M. Cason ◽  
Bill F. McCutchen ◽  
...  

The cultivated peanut (Arachis hypogaea L.) is a legume consumed worldwide in the form of oil, nuts, peanut butter, and candy. Improving peanut production and nutrition will require new technologies to enable novel trait development. Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR–Cas9) is a powerful and versatile genome-editing tool for introducing genetic changes for studying gene expression and improving crops, including peanuts. An efficient in vivo transient CRISPR–Cas9- editing system using protoplasts as a testbed could be a versatile platform to optimize this technology. In this study, multiplex CRISPR–Cas9 genome editing was performed in peanut protoplasts to disrupt a major allergen gene with the help of an endogenous tRNA-processing system. In this process, we successfully optimized protoplast isolation and transformation with green fluorescent protein (GFP) plasmid, designed two sgRNAs for an allergen gene, Ara h 2, and tested their efficiency by in vitro digestion with Cas9. Finally, through deep-sequencing analysis, several edits were identified in our target gene after PEG-mediated transformation in protoplasts with a Cas9 and sgRNA-containing vector. These findings demonstrated that a polyethylene glycol (PEG)-mediated protoplast transformation system can serve as a rapid and effective tool for transient expression assays and sgRNA validation in peanut.


2021 ◽  
Author(s):  
Venera S. Kamburova ◽  
Ilkhom B. Salakhutdinov ◽  
Shukhrat E. Shermatov ◽  
Ibrokhim Y. Abdurakhmonov

The main task of plant breeding is creating of high-yield, resistant to biotic and abiotic stresses crop varieties with high product quality. The using of traditional breeding methods is limited by the duration of the new crop varieties creation with the required agronomic traits. This depends not only on the duration of growing season and reaching of mature stage of plants (especially the long-period growth plants, e.g. trees), as well as is associated with applying of multiple stages of crossing, selection and testing in breeding process. In addition, conventional methods of chemical and physical mutagenesis do not allow targeting effect to genome. However, the introduction of modern DNA-technology methods, such as genome editing, has opened in a new era in plant breeding. These methods allow to carry out precise and efficient targeted genome modifications, significantly reducing the time required to get plants with desirable features to create new crop varieties in perspective. This review provides the knowledge about application of genome editing methods to increase crop yields and product quality, as well as crop resistance to biotic and abiotic stresses. In addition, future prospects for integrating these technologies into crop breeding strategies are also discussed.


Sign in / Sign up

Export Citation Format

Share Document