scholarly journals Excitation‐Intensity (EI) Effect on Photoluminescence of ZnO Materials with Various Morphologies

Author(s):  
Prasada Rao Talakonda
Keyword(s):  
1989 ◽  
Vol 162 ◽  
Author(s):  
J. A. Freitas ◽  
S. G. Bishop

ABSTRACTThe temperature and excitation intensity dependence of photoluminescence (PL) spectra have been studied in thin films of SiC grown by chemical vapor deposition on Si (100) substrates. The low power PL spectra from all samples exhibited a donor-acceptor pair PL band which involves a previously undetected deep acceptor whose binding energy is approximately 470 meV. This deep acceptor is found in every sample studied independent of growth reactor, suggesting the possibility that this background acceptor is at least partially responsible for the high compensation observed in Hall effect studies of undoped films of cubic SiC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Q. M. Liu ◽  
D. Wu ◽  
Z. A. Li ◽  
L. Y. Shi ◽  
Z. X. Wang ◽  
...  

AbstractUltrafast control of material physical properties represents a rapidly developing field in condensed matter physics. Yet, accessing the long-lived photoinduced electronic states is still in its early stages, especially with respect to an insulator to metal phase transition. Here, by combining transport measurement with ultrashort photoexcitation and coherent phonon spectroscopy, we report on photoinduced multistage phase transitions in Ta2NiSe5. Upon excitation by weak pulse intensity, the system is triggered to a short-lived state accompanied by a structural change. Further increasing the excitation intensity beyond a threshold, a photoinduced steady new state is achieved where the resistivity drops by more than four orders at temperature 50 K. This new state is thermally stable up to at least 350 K and exhibits a lattice structure different from any of the thermally accessible equilibrium states. Transmission electron microscopy reveals an in-chain Ta atom displacement in the photoinduced new structure phase. We also found that nano-sheet samples with the thickness less than the optical penetration depth are required for attaining a complete transition.


2021 ◽  
Vol 129 (24) ◽  
pp. 243104
Author(s):  
M. S. Leanenia ◽  
E. V. Lutsenko ◽  
M. V. Rzheutski ◽  
G. P. Yablonskii ◽  
T. G. Naghiyev ◽  
...  

2001 ◽  
Vol 696 ◽  
Author(s):  
Gu Hyun Kim ◽  
Jung Bum Choi ◽  
Joo In Lee ◽  
Se-Kyung Kang ◽  
Seung Il Ban ◽  
...  

AbstractWe have studied infrared photoluminescence (PL) and x-ray diffraction (XRD) of 400 nm and 1500 nm thick InAs epilayers on GaAs, and 4 nm thick InAs on graded InGaAs layer with total thickness of 300 nm grown by molecular beam epitaxy. The PL peak positions of 400 nm, 1500 nm and 4 nm InAs epilayer measured at 10 K are blue-shifted from that of InAs bulk by 6.5, 4.5, and 6 meV, respectively, which can be largely explained by the residual strain in the epilayer. The residual strain caused by the lattice mismatch between InAs and GaAs or graded InGaAs/GaAs was observed from XRD measurements. While the PL peak position of 400 nm thick InAs layer is linearly shifted toward higher energy with increase in excitation intensity ranging from 10 to 140 mW, those of 4 nm InAs epilayer on InGaAs and 1500 nm InAs layer on GaAs is gradually blue-shifted and then, saturated above a power of 75 mW. These results suggest that adopting a graded InGaAs layer between InAs and GaAs can efficiently reduce the strain due to lattice mismatch in the structure of InAs/GaAs.


1991 ◽  
Vol 240 ◽  
Author(s):  
A. G. Choo ◽  
H. E. Jackson ◽  
P. Chen ◽  
A. J. Steckl ◽  
V. Gupta ◽  
...  

ABSTRACTLow temperature photoluminescence spectra have been used to characterize conventional ion beam (CIB) and focused ion beam (FIB) implanted superlattices. The excitation dependence of the single scan FIB is found to be significantly different from CIB and multiple scan FIB implantations which are similar. The peak position of the donor-acceptor transition is observed to change to higher energies significantly slower with excitation intensity for the single scan FIB case when compared to the multiple scan FIB and CIB cases. Simple models to describe these effects are briefly discussed.


1999 ◽  
Vol 595 ◽  
Author(s):  
B. Shen ◽  
T. Someya ◽  
O. Moriwaki ◽  
Y. Arakawa

AbstractPhotoluminescence (PL) of modulation-doped Al0.22Ga0.78N/GaN heterostructures was investigated. The PL peak related to recombination between the two-dimensional electron gases (2DEG) and photoexcited holes is located at 3.448 eV at 40 K, which is 45 meV below the free excitons (FE) emission in GaN. The peak can be observed at temperatures as high as 80 K. The intensity of the 2DEG PL peak is enhanced significantly by incorporating a thin Al0.12Ga0.88N layer into the GaN layer near the heterointerface to suppress the diffusion of photoexcited holes. The energy separation of the 2DEG peak and the GaN FE emission decreases with increasing temperature. Meanwhile, the 2DEG peak energy increases with increasing excitation intensity. These results are attributed to the screening effect of electrons on the bending of the conduction band at the heterointerface, which becomes stronger when temperature or excitation intensity is increased.


2015 ◽  
Vol 1736 ◽  
Author(s):  
M. A. Reshchikov ◽  
J.D. McNamara ◽  
A. Usikov ◽  
H. Helava ◽  
Yu. Makarov

ABSTRACTWe have studied photoluminescence (PL) from undoped GaN films grown by HVPE technique on sapphire. Several defect-related PL bands are observed in the low-temperature PL spectrum. The concentrations of the defects responsible for these PL bands are determined from the dependence of PL intensity on excitation intensity. The RL band with a maximum at 1.8 eV is often the dominant PL band in HVPE GaN. It is caused by an unknown defect with the concentration of up to ∼1017 cm-3. The concentrations of defects responsible for other defect-related PL bands rarely exceed 1015 cm-3.


2021 ◽  
pp. 2150392
Author(s):  
B. D. Urmanov ◽  
M. S. Leanenia ◽  
G. P. Yablonskii ◽  
O. B. Taghiyev ◽  
K. O. Taghiyev ◽  
...  

Photoluminescence properties of [Formula: see text] chalcogenide semiconductors have been studied under the impulse laser excitation in the range of 10–105 W/cm2 at room temperature. This study has shown that as a result of excitation, photoluminescence of [Formula: see text] is characterized by the emission in the interval of 450–575 nm with significant domination in the spectra line at 660 nm. Photoluminescence of [Formula: see text] quenches at wavelengths of 560 nm and 660 nm with constant time frames 258 ns and 326 ns, respectively. Moreover, the temperature measurements of photoluminescence were performed on the samples in the temperature range of 10–300 K.


1998 ◽  
Vol 536 ◽  
Author(s):  
H. Koyama ◽  
P. M. Fauchet

AbstractThe optical properties of oxidized free-standing porous silicon films excited by a cw laser have been investigated. It is found that samples oxidized at 800–950 °C show a strongly superlinear light emission at an excitation intensity of ∼10 W/cm2. This emission has a peak at 900–1100 nm and shows a blueshift as the oxidation temperature is increased. These samples also show a very large induced absorption, where the transmittance is found to decrease reversibly by ≤99.7 %.The induced absorption increases linearly with increasing pump laser intensity. Both the superlinear emission and the large induced absorption are quenched when the samples are attached to materials with a higher thermal conductivity, suggesting that laser-induced thermal effects are responsible for these phenomena.


Sign in / Sign up

Export Citation Format

Share Document