scholarly journals Biogas Production: Evaluation and Possible Applications

2021 ◽  
Author(s):  
Venko Beschkov

Biogas is an excellent example of renewable feedstock for energy production enabling closure of the carbon cycle by photosynthesis of the existing vegetation, without charging the atmosphere with excessive carbon dioxide. The present review contains traditional as well as new methods for the preparation of raw materials for biogas production. These methods are compared by the biogas yield and biogas content with the possible applications. Various fields of biogas utilization are discussed. They are listed from simple heating, electricity production by co-generation, fuel cell applications to catalytic conversions for light fuel production by the Fischer-Tropsch process. The aspects of carbon dioxide recycling reaching methane production are considered too.

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3146 ◽  
Author(s):  
Przemysław Seruga ◽  
Małgorzata Krzywonos ◽  
Marta Wilk

Anaerobic digestion (AD) has been used widely as a form of energy recovery by biogas production from the organic fraction of municipal solid wastes (OFMSW). The aim of this study was to evaluate the effect of the introduction of co-substrates (restaurant wastes, corn whole stillage, effluents from the cleaning of chocolate transportation tanks) on the thermophilic anaerobic digestion process of the mechanically separated organic fraction of municipal solid wastes in a full-scale mechanical-biological treatment (MBT) plant. Based on the results, it can be seen that co-digestion might bring benefits and process efficiency improvement, compared to mono-substrate digestion. The 15% addition of effluents from the cleaning of chocolate transportation tanks resulted in an increase in biogas yield by 31.6%, followed by a 68.5 kWh electricity production possibility. The introduction of 10% corn stillage as the feedstock resulted in a biogas yield increase by 27.0%. The 5% addition of restaurant wastes contributed to a biogas yield increase by 21.8%. The introduction of additional raw materials, in fixed proportions in relation to the basic substrate, increases biogas yield compared to substrates with a lower content of organic matter. In regard to substrates with high organic loads, such as restaurant waste, it allows them to be digested. Therefore, determining the proportion of different feedstocks to achieve the highest efficiency with stability is necessary.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2843
Author(s):  
Krystyna Zielińska ◽  
Agata Fabiszewska ◽  
Katarzyna Piasecka-Jóźwiak ◽  
Renata Choińska

A new direction in the use of lactic acid bacteria inoculants is their application for renewable raw materials ensiling for biogas production. The aim of the study was to demonstrate the possibility of stimulating the synthesis of propionic acid in the process of co-fermentation of selected strains of Lactobacillus buchneri and L. diolivorans as well as L. buchneri and Pediococcus acidilactici. L. buchneri KKP 2047p and P. acidilactici KKP 2065p were characterized by the special capabilities for both synthesis and metabolism of 1,2-propanediol. L. diolivorans KKP 2057p stands out for the ability to metabolize 1,2-propanediol to propionic acid. As a result of the co-fermentation a concentration of propionic acid was obtained at least 1.5 times higher in the final stage of culture in comparison to cultivating individual species of bacteria separately. The results of in vitro experiments were applied in agricultural practice, by application of two lactic acid bacteria inoculants in ensiling of grass silage and improving its suitability for biogas production. Grass silages made with the addition of the inoculant were characterized by the content of 1,2-propanediol, 1-propanol and propionic acid ensured extension of the aerobic stability from 4 to 7 days in comparison to untreated silages. It was found that the use of both inoculants resulted in an approximately 10 - 30% increase in biogas yield from this raw material.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3074
Author(s):  
Apostolos Spyridonidis ◽  
Ioanna A. Vasiliadou ◽  
Christos S. Akratos ◽  
Κaterina Stamatelatou

Biogas plants have been started to expand recently in Greece and their positive contribution to the economy is evident. A typical case study is presented which focuses on the long-term monitoring (lasting for one year) of a 500 kW mesophilic biogas plant consisting of an one-stage digester. The main feedstock used was cow manure, supplemented occasionally with chicken manure, corn silage, wheat/ray silage, glycerine, cheese whey, molasses and olive mill wastewater. The mixture of the feedstocks was adjusted based on their availability, cost and biochemical methane potential. The organic loading rate (OLR) varied at 3.42 ± 0.23 kg COD m−3 day−1 (or 2.74 ± 0.18 kg VS m−3 day−1) and resulted in a stable performance in terms of specific biogas production rate (1.27 ± 0.12 m3 m−3 day−1), biogas yield (0.46 ± 0.05 m3 kg−1 VS, 55 ± 1.3% in methane) and electricity production rate (12687 ± 1140 kWh day−1). There were no problems of foaming, nor was there a need for trace metal addition. The digestate was used by the neighboring farmers who observed an improvement in their crop yield. The profit estimates per feedstock indicate that chicken manure is superior to the other feedstocks, while molasses, silages and glycerin result in less profit due to the long distance of the biogas plant from their production source. Finally, the greenhouse gas emissions due to the digestate storage in the open air seem to be minor (0.81% of the methane consumed).


2013 ◽  
Vol 14 (2) ◽  
pp. 183-191

Biofuels represent a possibility to reduce greenhouse gas (GHG) emissions within the transport sector. In this context the sustainability of biofuels, especially so called 1st generation biofuels led to controversial discussions in the past. Biofuels from waste and residues represent a well suited but quantitative limited alternative due to their sustainability. At an international level, different approaches for converting waste and residues into biofuels can be found. Developing countries in general use classic transesterification of waste fats to produce biodiesel. Technically advanced options such as pyrolysis, gasification, Fischer-Tropsch-Diesel, anaerobic fermentation and distillation, as well as biogas production coupled with biomethane upgrading, are mostly found in industrialized countries. Within this study, different waste to biofuel options are reviewed ranging from small scale to industrial scale and take into account used raw materials, technological application and (potential) GHG-reduction. Further the potential of several wastes and residues for gasification processes and synthesis of biofuels in Germany is described. Biofuel from waste offers promising funding incentives because of the “double counting” according to 2009/28/EC and the switch in mandatory blending from an amount based quota to a GHG-based blending quota in 2015.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
KeChrist Obileke ◽  
Sampson Mamphweli ◽  
Edson L. Meyer ◽  
Golden Makaka ◽  
Nwabunwanne Nwokolo

Biogas digester dimensions and materials of construction are important factors of consideration during the design and fabrication phase. The aim of this study is to provide a detailed analysis of the design and fabrication of a 2.15 m3 pilot plastic biogas digester for biogas generation. To establish this, a design equation covering the volume of the digester, inlet and outlet chambers, and digester cover plate were developed considering the shape of the digester. The digestion chamber of the biogas digester under study was fabricated using high-density polyethylene (HDPE) plastic, while the inlet and outlet chambers were constructed with bricks/cement. The study was motivated due to some limitations such as leakage associated with previous designs. In the present study, a ventilation test was conducted after the fabrication to ensure the digester is leak free. Results obtained showed a total volumetric methane gas yield of 2.18 m3 (54.50%) and carbon dioxide yield of 1.77 m3 (44.25%) making up a total biogas yield of 4.00 m3. In addition, the percentage concentration of methane and carbon dioxide were found to be 60% and 30%, respectively. The developed plastic biogas digester has been found to be appropriate for biogas production using cow dung as substrate.


2016 ◽  
Vol 23 (3) ◽  
pp. 387-400 ◽  
Author(s):  
Antonina Kalinichenko ◽  
Valerii Havrysh ◽  
Vasyl Perebyynis

Abstract The aim of the research is the development of theoretical and methodical bases for determining the feasibility of plant raw materials growing for its further bioconversion into energy resources and technological materials to maximize profit from business activities. Monograph, statistics, modelling and abstract logical methods have been used during the research. Directions of biogas usage have been examined. Biogas yields from different crops have been analyzed. It has been determined that high methane yields can be provided from root crops, grain crops, and several green forage plants. So, forage beet and maize can provide more than 5,500 m3 of biogas per hectare. Attention is paid to the use of by-products of biogas plants, especially carbon dioxide. Carbon dioxide is an important commodity and can increase profitability of biogas plant operating. It can be used for different purposes (food industry, chemical industry, medicine, fumigation, etc). The most important parameters of the biogas upgrading technologies have been analyzed. If output of an upgrade module is more than 500 nm3/h, investment costs of different available technologies are almost equal. According to experts, it is economically feasible to use anaerobic digestion biogas systems to upgrade biomethane provided their performance is equivalent to 3,000 litres of diesel fuel per day. The economic and mathematical models have been suggested to determine the feasibility of growing plant materials to maximize the gross profit. The target function is the maximum gross income from biogas utilization. It has the following limitations: annual production of biogas, consumption of electricity, heat and motor fuels. The mathematical model takes into account both meeting own requirement and selling surplus energy resources and co-products including carbon dioxide. In case of diesel fuel substitution, an ignition dose of diesel fuels has been considered. The algorithm for making a decision on construction of a biogas plant has been offered.


2013 ◽  
Vol 675 ◽  
pp. 374-378
Author(s):  
Bin Yang ◽  
Fa Gen Yang ◽  
Wu Di Zhang ◽  
Fang Yin ◽  
Xing Ling Zhao ◽  
...  

In order to gain biogas production potential and energy conversion efficiency of biogas fermentation of sorghum distilled residue (SDR), the anaerobic batch fermentation experiments were performed at 30 degrees Celsius. After experiments, we got experimental results as follows: biogas production of SDR during total fermentation time of 28days is 2885mL; properties of raw materials including: TS is 88.58%, VS is 16.69%, heating value is 15.684kJ/g, TS biogas yield is 220mL/g, VS biogas yield is 1300ml/g, raw material biogas yield is 190mL/g, and energy conversion efficiency of biogas fermentation of SDR is 30.38%. The results indicate that biogas fermentation is an effective new method to recycle clean energy from SDR.


Author(s):  
Logan Rosenberg ◽  
Gerrit Kornelius

Biogas can be generated from biomass in an anaerobic digestion process and used to generate electricity and heat as an alternative energy source to fossil fuel-generated electricity. This study investigated biogas generation from cattle manure dried for periods up to 40 days. Manure samples were analysed for gas yield using the biochemical methane production test. The biogas volume produced by manure samples aged for periods up to 40 days after seeding with cattle rumen fluid was measured as a function of time until there was no further measurable gas production. The biogas was analysed for methane and carbon dioxide content using a gas chromatograph. The corresponding cumulative net biogas yield ranged from 154 to 369 Nml/g.VS respectively. The test results showed that an average of 240 Nml/g.VS of biogas can be produced from cattle manure that is less than 40 days old, with an average methane and carbon dioxide percentage of 63% and 31% respectively. Within 3 to 4 days the manure samples generated 80% of the final biogas volume. The drying process was found to occur at a constant rate per unit area, regardless of the manure thickness up to thickness of 200 mm. Biogas formation closely followed the Gompertz equation. There was no significant difference in the biogas production nor biogas production rate for cattle feedlot manure that was fresh up until aging to 40 days.


1970 ◽  
pp. 172-180
Author(s):  
О.О. Chernelivska ◽  
I.M. Dziubenko

Purpose. To study the adaptive elements of technology for growing high-stem forage crops (corn, sugar sorghum, sudanese grass, sorghum-sudanese hybrid) and features of biomass formation for biogas production in the right-bank forest-steppe of Ukraine. Methods. Field, laboratory, quantitative-weight, visual, calculation-comparative, mathematical-statistical. Results. The researche results provided the adaptive technology elements cultivation of high-stem forage cultures for the further using of biomass for biogas production. The use of complex mineral fertilizers (NPK) on crops of high-stem forage crops led to an increase in crop productivity compared to the application of nitrogen fertilizers (N). Transferring of the crops harvesting time from the phase of stem prolongation to the phase of the heads forming, and especially the milk-wax ripeness of the grain provided an increase in yield and quality of biomass. The application of the crop nutrition system and biomass harvesting in different phases of fodder crop development ensured the yield of corn at the level of 26.8-66.5 t/ha, sudanese grass – 26.6-60.2 t/ha, sorghum-sudanese hybrid – 34,1-114.7 t/ha and sugar sorghum – 37.3-105.4 t/ha, estimated yield of biogas from 2.83 to 32.54 thousand m3/ha and energy from biogas – from 51.9-709.4 GJ/ha, depending on the fertilizer option and harvesting period. Conclusions. The application of the optimal fertilizer system (N90P90K90) and harvesting of biomass in the phase of milk-wax ripeness of grain the highest productivity was provided by crops of high-stem forage crops: yield of corn biomass at the level of 54.9-66.5 t/ha, sudanese grass – 45.0-60.2 t/ha, sorghum-sudanese hybrid – 82.0-114.7 t/ha and sugar sorghum 74.3-105.4 t/ha, estimated biogas yield from 12.91 to 32.54 thousand m3/ha and energy from biogas – 281.4-709.4 GJ/ha, with a level of profitability from 7.1 to 177.6% dependently on the crop and nutrient background.


2018 ◽  
Vol 38 ◽  
pp. 02006
Author(s):  
Yu-Ming Sun ◽  
Xiao-Mei Huang ◽  
Yin-Hu Kang

In China, livestock manure emission has resulted in severe pollution to the environment and it is an efficient spreading agent of diseases. For this reason, the biogas has gotten a rapid development in the past few decades. As a kind of renewable and clean energy, many studies have indicated the prospect of biogas to replace fossil fuels in the future. However, the methane industrial production process is unstable due to various factors. Therefore, it is necessary to enhance the biogas fermentation efficiency. In this paper, the influences of the raw materials and the total solids (TS) concentration on biogas production characteristics are studied, where the utilization of raw materials can be reflected by the biogas production rate in the results. The results showed the anaerobic fermentation cycle is prolonged and biogas yield increases, but the utilization decreases with TS increases.


Sign in / Sign up

Export Citation Format

Share Document