scholarly journals Molecular Aspects of Pathophysiology of Platelet Receptors

Platelets ◽  
2020 ◽  
Author(s):  
Mrinal K. Poddar ◽  
Soumyabrata Banerjee

Receptor is a dynamic instrumental surface protein that helps to interact with specific molecules to respond accordingly. Platelet is the smallest in size among the blood components, but it plays many pivotal roles to maintain hemostasis involving its surface receptors. It (platelet) has cell adhesion receptors (e.g., integrins and glycoproteins), leucine-rich repeats receptors (e.g., TLRs, glycoprotein complex, and MMPs), selectins (e.g., CLEC, P-selectin, and CD), tetraspanins (e.g., CD and LAMP), transmembrane receptors (e.g., purinergic—P2Y and P2X1), prostaglandin receptors (e.g., TxA2, PGH2, and PGI2), immunoglobulin superfamily receptors (e.g., FcRγ and FcεR), etc. on its surface. The platelet receptors (e.g., glycoproteins, protease-activated receptors, and GPCRs) during platelet activation are over expressed and their granule contents are secreted (including neurotransmitters, cytokines, and chemokines) into circulation, which are found to be correlated with different physiological conditions. Interestingly, platelets promote metastasis through circulation protecting from cytolysis and endogenous immune surveillance involving several platelets receptors. The updated knowledge about different types of platelet receptors in all probable aspects, including their inter- and intra-signaling mechanisms, are discussed with respect to not only its (platelets) receptor type but also under different pathophysiological conditions.

2003 ◽  
Vol 5 (18) ◽  
pp. 1-18 ◽  
Author(s):  
Bellur Seetharam ◽  
Raghunatha R. Yammani

The primary function of cobalamin (Cbl; vitamin B12) is the formation of red blood cells and the maintenance of a healthy nervous system. Before cells can utilise dietary Cbl, the vitamin must undergo cellular transport using two distinct receptor-mediated events. First, dietary Cbl bound to gastric intrinsic factor (IF) is taken up from the apical pole of ileal epithelial cells via a 460 kDa receptor, cubilin, and is transported across the cell bound to another Cbl-binding protein, transcobalamin II (TC II). Second, plasma TC II–Cbl is taken up by cells that need Cbl via the TC II receptor (TC II-R), a 62 kDa protein that is expressed as a functional dimer in cellular plasma membranes. Human Cbl deficiency can develop as a result of acquired or inherited dysfunction in either of these two transmembrane transport events. This review focuses on the biochemical, cellular and molecular aspects of IF and TC II and their cell-surface receptors.


1998 ◽  
Vol 188 (11) ◽  
pp. 2083-2090 ◽  
Author(s):  
Marion H. Brown ◽  
Kent Boles ◽  
P. Anton van der Merwe ◽  
Vinay Kumar ◽  
Porunelloor A. Mathew ◽  
...  

2B4 is a cell surface glycoprotein related to CD2 and implicated in the regulation of natural killer and T lymphocyte function. A recombinant protein containing the extracellular region of mouse (m)2B4 attached to avidin-coated fluorescent beads bound to rodent cells, and binding was completely blocked by CD48 monoclonal antibodies (mAbs). Using surface plasmon resonance, we showed that purified soluble mCD48 bound m2B4 with a six- to ninefold higher affinity (Kd ≈ 16 μM at 37°C) than its other ligand, CD2. Human CD48 bound human 2B4 with a similar affinity (Kd ≈ 8 μM). The finding of an additional ligand for CD48 provides an explanation for distinct functional effects observed on perturbing CD2 and CD48 with mAbs or by genetic manipulation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 18-18
Author(s):  
Matthias Krusch ◽  
Katrin M. Baltz ◽  
Tina Baessler ◽  
Lothar Kanz ◽  
Helmut R. Salih

Abstract NK cells play an important role in the reciprocal interaction of tumor cells with the immune system and participate in the surveillance and eradication of hematological malignancies. The activity of NK cells is governed by a balance of activating and inhibitory surface receptors. Glucocorticoid-induced TNF-related protein (GITR) and its ligand (GITRL) are members of the TNF/TNF receptor (TNFR) superfamily, which mediates multiple cellular functions including proliferation, differentiation, and cell death. Recently we reported that NK cells express GITR while cancer cells express GITRL and GITR-GITRL interaction down regulates NK cell-mediated anti-tumor immunity (Baltz et al., FASEB J 2007). Here we demonstrate that GITRL is expressed on 6 of 7 investigated acute myeloid leukemia (AML) cell lines and on primary AML cells in 30 of 52 (59%) patients, while no GITRL expression was detected on CD34+ cells of healthy donors (n=5). GITRL expression was not restricted to a specific French-American-British (FAB) subtype, but was significantly (p<0.05, one-way ANOVA) associated with monocytic (FAB M4, M5) differentiation. In addition, no association with a particular cytogenetic abnormality or with expression of MHC class I was observed. Reverse signaling via GITRL led to phosphorylation of ERK and JNK resulting in significantly (p<0.05, Mann-Whitney U-test) enhanced production of IL-10 and TNF by patient AML cells (n=10). In line, specific inhibitors for JNK and ERK1/2 blocked the cytokine release by AML cells demonstrating that activation of MAP kinases is responsible for the production of the immunoregulatory cytokines following GITRL stimulation. Importantly, blocking GITR-GITRL interaction in cocultures of AML and NK cells significantly (both <0.05 Mann-Whitney U-test) increased cellular cytotoxicity about 70% and IFN-γ production about 60%, and this was due to restored NK cell NF-κB activity. Thus, GITRL substantially influences immunoediting by AML cells and enables the escape of AML cells from NK cell-mediated immune surveillance. The correlation found between GITRL expression and NK cell susceptibility may provide useful information for NK cell-based immunotherapy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2164-2164
Author(s):  
Benjamin J Schmiedel ◽  
Constantin M Wende ◽  
Tina Baessler ◽  
Carolin Scheible ◽  
Stefan Wirths ◽  
...  

Abstract Abstract 2164 NK cells play an important role in tumor immunosurveillance, especially of leukemia. Their reactivity is governed by various activating and inhibitory molecules expressed by their targets including multiple members of the TNF family. The TNF family member Receptor Activator of NF-κB ligand (RANKL) and its receptors RANK and osteoprotegerin (OPG) are key regulators of bone remodelling, but recently have also been shown to influence progression of hematopoetic malignancies. Here we studied the yet unkown role of the RANK/RANKL molecule system in NK cells and their reactivity against acute myeloid leukemia (AML). Primary leukemia cells from AML patients were found to substantially express RANKL mRNA and surface protein in 75% of the investigated cases (n=40). Reverse signaling via surface-expressed RANKL into AML blasts induced the release of soluble factors including the immunoregulatory cytokines TNF and IL-10, which impaired NK cell anti-tumor reactivity. Moreover, we observed upregulation of RANK on NK cells among PBMC of healthy donors upon exposure to IL-10. This was not caused by direct effects on NK cells, but was rather due to yet unidentified factors released by monocytes among the PBMC upon IL-10 exposure and could be prevented by the activating cytokine IL-2. Furthermore, functional experiments with NK cells and RANKL transfectants or RANKL-negative controls revealed that forward signaling into RANK-expressing NK cells by tumor-expressed RANKL also directly impaired NK cytotoxicity and IFN-γ production. In line, blocking RANK-RANKL interaction using anti-RANKL antibodies or RANK-Fc fusion protein increased cytotoxicity and cytokine production of allogenic NK cells in cultures with RANKL-positive primary AML cells. Our data indicate that RANKL expression enables immune evasion of leukemia cells both by directly inhibiting reactivity of RANK-expressing NK cells and by orchestrating a reciprocal interplay between AML cells, monocytes and NK cells resulting in an immunosuppressive cytokine milieu. Thus, therapeutic modulation of the RANK/RANKL system, e.g. with Denosumab/AMG162, which is presently being evaluated for treatment of both non-malignant and malignant osteolysis, holds promise to reinforce NK reactivity against hematopoietic malignancies. Disclosures: No relevant conflicts of interest to declare.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
M. H. Verheije ◽  
P. J. M. Rottier

Oncolytic virus therapy is based on the ability of viruses to effectively infect and kill tumor cells without destroying the normal tissues. While some viruses seem to have a natural preference for tumor cells, most viruses require the modification of their tropism to specifically enter and replicate in such cells. This review aims to describe the transductional targeting strategies currently employed to specifically redirect viruses towards surface receptors on tumor cells. Three major strategies can be distinguished; they involve (i) the incorporation of new targeting specificity into a viral surface protein, (ii) the incorporation of a scaffold into a viral surface protein to allow the attachment of targeting moieties, and (iii) the use of bispecific adapters to mediate targeting of a virus to a specified moiety on a tumor cell. Of each strategy key features, advantages and limitations are discussed and examples are given. Because of their potential to cause sustained, multiround infection—a desirable characteristic for eradicating tumors—particular attention is given to viruses engineered to become self-targeted by the genomic expression of a bispecific adapter protein.


1999 ◽  
Vol 189 (5) ◽  
pp. 787-796 ◽  
Author(s):  
Claudia Cantoni ◽  
Cristina Bottino ◽  
Massimo Vitale ◽  
Anna Pessino ◽  
Raffaella Augugliaro ◽  
...  

Surface receptors involved in natural killer (NK) cell triggering during the process of tumor cell lysis have recently been identified. Of these receptors, NKp44 is selectively expressed by IL-2– activated NK cells and may contribute to the increased efficiency of activated NK cells to mediate tumor cell lysis. Here we describe the molecular cloning of NKp44. Analysis of the cloned cDNA indicated that NKp44 is a novel transmembrane glycoprotein belonging to the Immunoglobulin superfamily characterized by a single extracellular V-type domain. The charged amino acid lysine in the transmembrane region may be involved in the association of NKp44 with the signal transducing molecule killer activating receptor–associated polypeptide (KARAP)/DAP12. These molecules were found to be crucial for the surface expression of NKp44. In agreement with data of NKp44 surface expression, the NKp44 transcripts were strictly confined to activated NK cells and to a minor subset of TCR-γ/δ+ T lymphocytes. Unlike genes coding for other receptors involved in NK cell triggering or inhibition, the NKp44 gene is on human chromosome 6.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Courtney L Smith ◽  
Andrew N Bayne ◽  
Jean-François Trempe ◽  
Daniel J Bernard

Abstract Immunoglobulin superfamily, member 1 (IGSF1), is an X-linked, type 1 transmembrane glycoprotein that is highly expressed in the anterior pituitary gland and testes. Mutations in the IGSF1 gene cause congenital central hypothyroidism, variable hypoprolactinemia, growth hormone dysregulation, and macroorchidism. Igsf1 knockout mice exhibit reduced pituitary TRH receptor (Trhr1) expression with an associated impairment in TRH-stimulated TSH secretion. The mechanism through which IGSF1 loss leads to reductions in Trhr1 levels is unresolved, at least in part because IGSF1’s cellular functions are unknown. The mature form of the IGSF1 protein consists of seven extracellular Ig loops, a single transmembrane domain containing a positively charged arginine, and a short intracellular carboxy-tail devoid of known functional motifs. Recently, IGSF1 was argued to be a member of the leukocyte receptor cluster (LRC) family. LRC proteins act as cell surface receptors for soluble or membrane-bound proteins. We therefore hypothesized that IGSF1 is a cell surface receptor for a presently undescribed ligand that regulates Trhr1 expression in pituitary thyrotrope cells. To identify candidate IGSF1 ligands, we implemented a new ligand trapping method, Ecto-Fc MS. We fused the extracellular (Ecto) domain of IGSF1 to the fragment crystallizable (Fc) region of human IgG, creating an Ecto-Fc fusion protein. Secreted IGSF1-Fc was purified and used as a ligand trap for bait proteins extracted from rat testes. The protein complexes were affinity purified with protein A beads, trypsin digested into peptides, subjected to orthogonal high-pH fractionation, and identified by tandem LC-MS/MS. More than 700 proteins were enriched in IGSF1-Fc preparations compared to an Fc-only negative control. Several secreted ligands and plasma-membrane proteins were identified, many of which are also expressed in pituitary thyrotrope cells. Identifying the ligand or ligands will enable us to determine IGSF1 function, and may lead to the discovery of novel causes of central hypothyroidism and macroorchidism.


1990 ◽  
Vol 111 (6) ◽  
pp. 3087-3096 ◽  
Author(s):  
E J de la Rosa ◽  
J F Kayyem ◽  
J M Roman ◽  
Y D Stierhof ◽  
W J Dreyer ◽  
...  

A novel neural surface protein, Bravo, shows a pattern of topological restriction in the embryonic chick retinotectal system. Bravo is present on the developing optic fibers in the retina; however, retinal axons in the tectum do not display Bravo. The appearance of Bravo in vitro is modulated by environmental cues. Axons growing out from retinal explants on retinal basal lamina, their natural substrate, express Bravo, whereas such axons growing on collagen do not. Retinal explants provide a valuable system to characterize the mechanism of Bravo restriction, as well as the cellular signals controlling it. Bravo was identified with monoclonal antibodies from a collection generated against exposed molecules isolated by using a selective cell surface biotinylation procedure. The NH2-terminal sequence of Bravo shows similarity with L1, a neural surface molecule which is a member of the immunoglobulin superfamily. This possible relationship to L1, together with its restricted appearance, suggests an involvement of Bravo in axonal growth and guidance.


Sign in / Sign up

Export Citation Format

Share Document