scholarly journals Wideband Systems with Energy Harvesting Units for 5G, Medical and Computer Industry

2021 ◽  
Author(s):  
Albert Sabban

Demand for green energy is in tremendous growth in the last decade. The continuous growth in production of portable RF systems increase the consumption of batteries and electrical energy. Batteries and conventional electrical energy increase the environmental pollution. Compact wideband efficient antennas are crucial for energy harvesting commercial portable sensors and systems. Small antennas have low efficiency. The efficiency of 5G, IoT communication and energy harvesting systems may be improved by using wideband efficient antennas. Ultra-wideband portable harvesting systems are presented in this chapter. This chapter presents new Ultra-Wideband energy harvesting system and antennas in frequencies ranging from 0.15GHz to 18GHz. Three wideband antennas cover the frequency range from 0.15GHz to 18GHz. A wideband metamaterial antenna with metallic strips covers the frequency range from 0.15GHz to 0.42GHz. The antenna bandwidth is around 75% for VSWR better than 2.3:1. A wideband slot antenna covers the frequency range from 0.4GHz to 6.4GHz. A wideband fractal notch antenna covers the frequency range from 6GHz to 18GHz. Printed passive and active notch and slot antennas are compact, low cost and have low volume. The active antennas may be employed in energy harvesting portable systems. The antennas and the harvesting system components may be assembled on the same, printed board. The antennas bandwidth is from 75–200% for VSWR better than 3:1. The antennas gain is around 3 dBi with efficiency higher than 90%. The antennas electrical parameters were computed by using 3D electromagnetic software in free space and in vicinity of the human body. There is a good agreement between computed and measured results.

Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1340 ◽  
Author(s):  
Albert Sabban

Demand for green technologies and green energy is in continuous growth in the last decade. Compact efficient radiators are very important for energy harvesting portable systems. Small antennas have low efficiency. The efficiency of communication and energy harvesting systems may increase by using efficient passive and active antennas. The system dynamic range may be improved by connecting amplifiers to the printed antenna feed line. Design, design considerations, computed and measured results of wearable meta-materials antennas with high efficiency for energy harvesting applications are presented in this paper. The antennas electrical parameters on human body were analyzed by using commercial full-wave software. The wearable antennas are compact and flexible and are 1.6 mm thick. The directivity and gain of the antennas with Split-ring resonators (SRR), is higher by 2 dB to 3 dB than the antennas without SRR. The resonant frequency of the antennas without SRR is higher by 5% to 10% than the antennas with SRR.


Author(s):  
Saman Farhangdoust ◽  
Gary Georgeson ◽  
Jeong-Beom Ihn ◽  
Armin Mehrabi

Abstract These days, piezoelectric energy harvesting (PEH) is introduced as one of the clean and renewable energy sources for powering the self-powered sensors utilized for wireless condition monitoring of structures. However, low efficiency is the biggest drawback of the PEHs. This paper introduces an innovative embedded metamaterial subframe (MetaSub) patch as a practical solution to address the low throughput limitation of conventional PEHs whose host structure has already been constructed or installed. To evaluate the performance of the embedded MetaSub patch (EMSP), a cantilever beam is considered as the host structure in this study. The EMSP transfers the auxetic behavior to the piezoelectric element (PZT) wherever substituting a regular beam with an auxetic beam is either impracticable or suboptimal. The concept of the EMSP is numerically validated, and the COMSOL Multiphysics software was employed to investigate its performance when a cantilever beam is subjected to different amplitude and frequency. The FEM results demonstrate that the harvesting power in cases that use the EMSP can be amplified up to 5.5 times compared to a piezoelectric cantilever energy harvester without patch. This paper opens up a great potential of using EMSP for different types of energy harvesting systems in biomedical, acoustics, civil, electrical, aerospace, and mechanical engineering applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Kanjuro Makihara ◽  
Shigeru Shimose

The harvesting of electrical energy generated from the flutter phenomenon of a plate wing is studied using the quasi-steady aerodynamic theory and the finite element method. The example of supersonic flutter structure comes from sounding rockets’ wings. Electrical energy is harvested from supersonic flutter by using piezoelectric patches and switching devices. In order to evaluate the harvesting performance, we simulate flutter dynamics of the plate wing to which piezoelectric patches are attached. We demonstrate that our harvesting system can generate much more electrical energy from wing flutter than conventional harvesting systems can. This flutter utilization changes our perception to a useful one in various fruitful applications from a destructive phenomenon.


2019 ◽  
Author(s):  
Rishal Asri ◽  
Koko Friansa

The current building is expected to provide physical comfort, such as room comfort, temperature, sound and lighting. Some equipment is needed that requires electrical energy to provide physical comfort. Like a room cooling device to provide thermal comfort, a room lamp to provide lighting comfort. The ITERA building built by the City Government of Bandar Lampung has high solar energy potential. While the electricity source still uses diesel fuel. The potential for solar energy radiation is used to become electrical energy by using glass windows as the foundation for installing solar energy harvesting systems using solar PV.


2021 ◽  
Vol 13 (11) ◽  
pp. 5893
Author(s):  
Diogo Correia ◽  
Adelino Ferreira

Society is dependent on transport systems, not only to meet its daily needs with short journeys but also to meet their arising needs with longer distances. The ability to connect remote regions and the trip duration makes the aircraft a mode of transport for distant travel. However, it impacts greenhouse gas production. The survey for new ways to reduce greenhouse gas emissions emerges from the contribution of energy harvesting systems. Energy harvesting technology has been presenting prosperous solutions and applications in road pavements. Due to the similarity between road pavements, this paper addresses state-of-the-art technologies for airport pavements and road pavements, aiming to analyze which ones can be developed for application in airport pavements. An analysis is presented not only for the density, efficiency, and energy generation, but also for each energy harvesting technology’s implementation and technology readiness level. The photovoltaic technology, to be incorporated into airport pavements, will allow sustainable energy generation dependent on the airport location. The hydraulic/pneumatic technology, to be incorporated into the airport pavements, will generate electrical energy based on aircraft movement.


2019 ◽  
Vol 113 ◽  
pp. 03010 ◽  
Author(s):  
Alessandra Cuneo ◽  
Stefano Barberis ◽  
Alberto Traverso ◽  
Paolo Silvestri

There are several small energy sources that can be exploited to provide useful energy: small temperature differences, mechanical vibrations, flow variations, latent exhausts are just some examples. The recovery of such common and small energy sources, usually wasted, for example with the conversion into useful amounts of electrical energy, is called energy harvesting. Energy harvesting allows low-power embedded devices to be powered from naturally-occurring or unwanted environmental energy (e.g. pressure or temperature difference). The main aim in the last years of researches in such field, was the increasing of the efficiency of such components, with a higher power output and a smaller size. At present, a wide range of systems incorporating energy harvesters are now available commercially, all of them specific to certain types of energy source. Energy harvesting from dissipation processes such as fluid lamination is a challenge for many different applications. In addition, control valves to dissipate overpressures are common usage of many plants and systems. This paper surveys the market opportunities of such harvesting systems, considering the trade-offs affecting their efficiency, their applicability, and ease of deployment. Particular attention will be devoted to small energy harvesters than can exploit small expansions, such as from lamination valves or to systems that can feed mini sensors from small pressure drops, promising compactness, efficiency and cost effectiveness.


Author(s):  
D. Dane Quinn ◽  
Angela L. Triplett ◽  
Lawrence A. Bergman ◽  
Alexander F. Vakakis

Self-contained long-lasting energy sources are rapidly increasing in importance as portable electronics and inaccessible devices such as wireless sensors are finding wider and more varied applications. However, in many circumstances replacing power supplies, such as conventional batteries, becomes impractical and the development of a self-renewing source of energy is paramount to the continued development of such devices. The ability to convert ambient mechanical energy to usable electrical energy fills these requirements and one aspect of current research seeks to increase the efficiency and performance of these energy harvesting systems. However, to achieve acceptable performance conventional vibration-based energy harvesting devices based on linear elements must be specifically tuned to match environmental conditions such as the frequency and amplitude of the external vibration. As the environmental conditions vary under ambient conditions the performance of these linear devices is dramatically decreased. The strategy to efficiently harvest energy from low-level, intermittent ambient vibration, proposed herein, relies on the unique properties of a particular class of strongly nonlinear vibrating systems that are referred to as “essentially” nonlinear.


2021 ◽  
Vol 30 (1/2) ◽  
pp. 12-19
Author(s):  
Woongbi CHO ◽  
Jeong Jae WIE

Triboelectric nanogenerators (TENGs) are eco-friendly energy-harvesting systems that produce electrical energy from disordered mechanical energy. To enhance the triboelectric performances of TENGs, many researchers have conducted in-depth studies of the polymer materials utilized in TENGs, so numerous studies have been reported on the relationship between their material properties and their energy-harvesting capabilities. Triboelectric performance depends on the electrical properties of the materials used, such as their electron affinities and dielectric constants. Representative examples of positive and negative tribomaterials include PA6, PEO, PVDF, and fluorinated sulfur copolymers, respectively. This article introduces the relationship among the compositions, structures, triboelectric performances of the polymer materials, and composites used in TENGs and summarizes the representative polymer materials applied in the latest TENGs.


Author(s):  
Shakeel Ahmed

Different types of energy which generally fulfill the requirements of computing are mostly from thermal, mechanical, solar, wind, acoustic, and wave. Typically, IoT devices are powered by batteries that have limited lifetime, and thus these IoT devices need to be self-powered or require supportive energy sources that uninterruptedly power IoT devices. Energy harvesting is one of the techniques that can be applied to power these devices, which is a procedure of apprehending energy from lone or more energy from renewable sources in the proximate atmosphere known as environmental energy which can be renovated into usable electrical energy. Numerous researches are being carried out to harvest energy. This chapter is the extended version of the previous work carried out and analyses the present works on the application of IoT in energy harvesting systems and extant different research works carried out by the investigators to classify them.


Sign in / Sign up

Export Citation Format

Share Document