Effective Parameters on Increasing Efficiency of Microscale Heat Sinks and Application of Liquid Cooling in Real Life

Author(s):  
Yousef Alihosseini ◽  
Amir Rezazad Bari ◽  
Mehdi Mohammadi

Over the past two decades, electronic technology and miniaturization of electronic devices continue to grow exponentially, and heat dissipation becomes a critical issue for electronic devices due to larger heat generation. So, the need to cool down electronic components has led to the development of multiple cooling methods and microscale heat sinks. This chapter reviewed recent advances in developing an efficient heat sink, including (1) geometry parameters, (2) flow parameters that affect the hydraulic–thermal performance of the heat sink. Also, the main goal of this chapter is to address the current gap between academic research and industry. Furthermore, commercialized electronic cooling devices for various applications are highlighted, and their operating functions are discussed, which has not been presented before.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 265
Author(s):  
Yuxin You ◽  
Beibei Zhang ◽  
Sulian Tao ◽  
Zihui Liang ◽  
Biao Tang ◽  
...  

Heat sinks are widely used in electronic devices with high heat flux. The design and build of microstructures on heat sinks has shown effectiveness in improving heat dissipation efficiency. In this paper, four kinds of treatment methods were used to make different microstructures on heat sink surfaces, and thermal radiation coating also applied onto the heat sink surfaces to improve thermal radiation. The surface roughness, thermal emissivity and heat dissipation performance with and without thermal radiation coating of the heat sinks were studied. The result shows that with an increase of surface roughness, the thermal emissivity can increase up to 2.5 times. With thermal radiation coating on a surface with microstructures, the heat dissipation was further improved because the heat conduction at the coating and heat sink interface was enhanced. Therefore, surface treatment can improve the heat dissipation performance of the heat sink significantly by enhancing the thermal convection, radiation and conduction.



Author(s):  
Nico Setiawan Effendi ◽  
Kyoung Joon Kim

A computational study is conducted to explore thermal performances of natural convection hybrid fin heat sinks (HF HSs). The proposed HF HSs are a hollow hybrid fin heat sink (HHF HS) and a solid hybrid fin heat sink (SHF HS). Parametric effects such as a fin spacing, an internal channel diameter, a heat dissipation on the performance of HF HSs are investigated by CFD analysis. Study results show that the thermal resistance of the HS increases while the mass-multiplied thermal resistance of the HS decreases associated with the increase of the channel diameter. The results also shows the thermal resistance of the SHF HS is 13% smaller, and the mass-multiplied thermal resistance of the HHF HS is 32% smaller compared with the pin fin heat sink (PF HS). These interesting results are mainly due to integrated effects of the mass-reduction, the surface area enhancement, and the heat pumping via the internal channel. Such better performances of HF HSs show the feasibility of alternatives to the conventional PF HS especially for passive cooling of LED lighting modules.



2000 ◽  
Author(s):  
X. Wei ◽  
Y. Joshi

Abstract A novel heat sink based on a multi-layer stack of liquid cooled microchannels is investigated. For a given pumping power and heat removal capability for the heat sink, the flow rate across a stack of microchannels is lower compared to a single layer of microchannels. Numerical simulations using a computationally efficient multigrid method [1] were carried out to investigate the detailed conjugate transport within the heat sink. The effects of the microchannel aspect ratio and total number of layers on thermal performance were studied for water as coolant. A heat sink of base area 10 mm by 10 mm with a height in the range 1.8 to 4.5 mm (2–5 layers) was considered with water flow rate in the range 0.83×10−6 m3/s (50 ml/min) to 6.67×10−6 m3/s (400 ml/min). The results of the computational simulations were also compared with a simplified thermal resistance network analysis.



2003 ◽  
Vol 125 (2) ◽  
pp. 208-216 ◽  
Author(s):  
Avram Bar-Cohen ◽  
Madhusudan Iyengar ◽  
Allan D. Kraus

The effort described herein extends the use of least-material single rectangular plate-fin analysis to multiple fin arrays, using a composite Nusselt number correlation. The optimally spaced least-material array was also found to be the globally best thermal design. Comparisons of the thermal capability of these optimum arrays, on the basis of total heat dissipation, heat dissipation per unit mass, and space claim specific heat dissipation, are provided for several potential heat sink materials. The impact of manufacturability constraints on the design and performance of these heat sinks is briefly discussed.



2018 ◽  
Vol 171 ◽  
pp. 02003
Author(s):  
Ibrahim Mjallal ◽  
Hussein Farhat ◽  
Mohammad Hammoud ◽  
Samer Ali ◽  
Ali AL Shaer ◽  
...  

Existing passive cooling solutions limit the short-term thermal output of systems, thereby either limiting instantaneous performance or requiring active cooling solutions. As the temperature of the electronic devices increases, their failure rate increases. That’s why electrical devices should be cooled. Conventional electronic cooling systems usually consist of a metal heat sink coupled to a fan. This paper compares the heat distribution on a heat sink relative to different heat fluxes produced by electronic chips. The benefit of adding a fan is also investigated when high levels of heat generation are expected.



2020 ◽  
Vol 24 (3 Part A) ◽  
pp. 1877-1884 ◽  
Author(s):  
Diego Alarcón ◽  
Eduardo. Balvís ◽  
Ricardo Bendaña ◽  
Alberto Conejero ◽  
de Fernández ◽  
...  

We present a detailed study of heating and cooling processes in LED luminaires with passive heat sinks. Our analysis is supported by numerical simulations as well as experimental measurements, carried on commercial systems used for outdoor lighting. We have focused our analysis on the common case of a single LED source in thermal contact with an aluminum passive heat sink, obtaining an excellent agreement with experimental measurements and the numerical simulations performed. Our results can be easily expanded, without loss of generality, to similar systems.



2011 ◽  
Vol 301-303 ◽  
pp. 165-169
Author(s):  
Da Yong Gao ◽  
Jian Xin Zhang ◽  
Ping Juan Niu

The spreading resistance is a very important parameter in the applications of heat sink. The design of electronic devices will fail without considering the influence of the spreading resistance. In this paper, a simple thermal model was simulated by Computational Fluid Dynamics software. Some factors, which have great influence on the spreading resistance, have been analyzed. The spreading resistance decreases significantly with the increasing of the area ratio between the heat source and the base-plate. While the ratio being 1, the spreading resistance reaches the mix value. The greater the thermal conductivity of heat sink, the lower the spreading resistance. With the increasing of the thickness of base-plate, the spreading resistance reduces. However, if the thickness exceeds the critical value, the spreading resistance will increase. And the spreading resistance reaches the mix value while the centers of heat source and the base-plate are overlapped.



2021 ◽  
Vol 1163 ◽  
pp. 73-88
Author(s):  
Md Tanbir Sarowar

Microchannel heat sink plays a vital role in removing a considerable amount of heat flux from a small surface area from different electronic devices. In recent times, the rapid development of electronic devices requires the improvement of these heat sinks to a greater extent. In this aspect, the selection of appropriate substrate materials of the heat sinks is of vital importance. In this paper, three boron-based ultra-high temperature ceramic materials (ZrB2, TiB2, and HfB2) are compared as a substrate material for the microchannel heat sink using a numerical approach. The fluid flow and heat transfer are analyzed using the finite volume method. The results showed that the maximum temperature of the heat source didn’t exceed 355K at 3.6MWm-2 for any material. The results also indicated HfB2 and TiB2 to be more useful as a substrate material than ZrB2. By applying 3.6 MWm-2 heat flux at the source, the maximum obtained surface heat transfer coefficient was 175.2 KWm-2K-1 in a heat sink having substrate material HfB2.



Author(s):  
Jin Yao Ho ◽  
Kai Choong Leong

Abstract A thermal energy storage unit filled with phase change material (PCM) can serve as a heat sink for the cooling of electronics with intermittent or periodic heat dissipation rates. The use of thermal conductive structures (TCS) is an effective method of improving the thermal performance of a PCM-based heat sink. In this paper, topology optimization is explored to develop a new class of TCS with a tree-like structure to enhance the thermal performance of a trapezoidal heat sink. The topology-optimized heat sink was then fabricated by Selective Laser Melting (SLM) using an aluminum alloy, AlSi10Mg, as the base powder. Experiments were performed to evaluate the thermal performance of the topology-optimized heat sink with the tree-like structure. In addition, a conventional longitudinal-fin heat sink of the same solid volume fraction (φ = 16.2%) and a heat sink without enhanced structure were also fabricated and experimentally investigated for comparison. Rubitherm RT-35HC paraffin wax was used as the PCM. Three different heat fluxes of 4.00 kW/m2, 5.08 kW/m2 and 7.24 kW/m2 were applied at the base of each specimen by a silicone rubber heater. The structure wall and the PCM temperatures were measured over time. Our results show that, for all heat rates tested, the topology-optimized heat sink was able to maintain a lower base temperature as compared to the fin-structure and the plain heat sinks. A thermal enhancement ratio (ε) is defined to evaluate the performance of the heat sinks with and without the use of PCM. From the experimental results, the highest ε value of 8.6 was achieved by the topology-optimized heat sink. These results indicate the better performance of the topology-optimized heat sink in dissipating heat as compared to the other specimens.



Author(s):  
Devdatta P. Kulkarni ◽  
Priyanka Tunuguntla ◽  
Guixiang Tan ◽  
Casey Carte

Abstract In recent years, rapid growth is seen in computer and server processors in terms of thermal design power (TDP) envelope. This is mainly due to increase in processor core count, increase in package thermal resistance, challenges in multi-chip integration and maintaining generational performance CAGR. At the same time, several other platform level components such as PCIe cards, graphics cards, SSDs and high power DIMMs are being added in the same chassis which increases the server level power density. To mitigate cooling challenges of high TDP processors, mainly two cooling technologies are deployed: Liquid cooling and advanced air cooling. To deploy liquid cooling technology for servers in data centers, huge initial capital investment is needed. Hence advanced air-cooling thermal solutions are being sought that can be used to cool higher TDP processors as well as high power non-CPU components using same server level airflow boundary conditions. Current air-cooling solutions like heat pipe heat sinks, vapor chamber heat sinks are limited by the heat transfer area, heat carrying capacity and would need significantly more area to cool higher TDP than they could handle. Passive two-phase thermosiphon (gravity dependent) heat sinks may provide intermediate level cooling between traditional air-cooled heat pipe heat sinks and liquid cooling with higher reliability, lower weight and lower cost of maintenance. This paper illustrates the experimental results of a 2U thermosiphon heat sink used in Intel reference 2U, 2 node system and compare thermal performance using traditional heat sinks solutions. The objective of this study was to showcase the increased cooling capability of the CPU by at least 20% over traditional heat sinks while maintaining cooling capability of high-power non-CPU components such as Intel’s DIMMs. This paper will also describe the methodology that will be used for DIMMs serviceability without removing CPU thermal solution, which is critical requirement from data center use perspective.



Sign in / Sign up

Export Citation Format

Share Document