scholarly journals Forest Vegetation and Dynamics Studies in India

2021 ◽  
Author(s):  
Madan Prasad Singh ◽  
Manohara Tattekere Nanjappa ◽  
Sukumar Raman ◽  
Suresh Hebbalalu Satyanatayana ◽  
Ayyappan Narayanan ◽  
...  

Forests across the globe have been exploited for resouces, and over the years the demand has increased, and forests are rather exploited instead of sustainable use. Focussed research on vegetation and forerst dynamics is necessary to preserve biodiversity and functioning of forests for sustanence of human life on Earth.This article emphasis that the India has a long history of traditional knowledge on forest and plants, and explorations from 17th century on forests and provided subsequent scientific approach on classification of forests. This also explains the developments of quantitative approach on the understanding of vegetation and forest diversity. Four case studies viz., Mudumalai, Sholayar, Uppangala, Kakachi permanent plots in the forests of Western Ghats has been explained in detail about their sampling methods with a note on the results of forest monitoring. In the case of deciduous forests, the population of plant species showed considerable fluctuations but basal area has been steadily increasing over time, and this is reflecting carbon sequestration. In Sholayar, a total of 25390 individuals of 106 woody species was recorded for < 1 cm diameter at breast height in the first census of the 10 ha plot in the tropical evergreen forest. In Uppangala, 1) a 27- year long investigation revealed that residual impact of logging in the evergreen forests and such forests would take more time to resemble unlogged forests in terms of composition and structure; 2) across a similar temporal scale, the unlogged plots trees < 30 cm gbh showed a more or less similar trend in mortality (an average of 0.8% year-1) and recruitment (1%). The Kakachi plot study revealed that 1) endemic species showed least change in stem density and basal area whereas widely distributed species showed greater change in both; 2) The overall recruitment of trees was 0.86 % per year and mortality 0.56% per year resulting in an annual turnover of 0.71% ; 3) majority of the gap species had high levels of recruitment and mortality resulting in a high turnover.Such studies can be used as early warning system to understand how the response of individual plants, species and forests with the climatic variability. In conclusion, the necessity of implementation of national level projects, the way forward of two such studies: 1) impact of climate change on Indian forests through Indian Council of Forestry Research and Education (ICFRE) colloborations and 2) Indian long term ecological observatorion, including the sampling protocols of such studies. This will be the first of its kind in India to address climate change issues at national and international level and helps to trace footprints of climate change impacts through vegetation and also reveals to what extent our forests are resilient to changes in the climate.

2019 ◽  
Vol 54 (1) ◽  
pp. 23-36
Author(s):  
Pillutla Rama Chandra Prasad ◽  
Jasti Asha Kumari

Abstract The dry evergreen forest of Kondapalli (Andhra Pradesh state, India) is declared as a forest reserve, but, despite of this, it is subjected to degradation resulting in loss of biodiversity. Thus, the current study was carried out to investigate the tree diversity of Kondapalli forest. A total of 566 ±16 trees (≥10 cm) representing 46±8 species from 40 genera and 21 families were recorded from the 0.36 ha area of Kondapalli forest. Mimosaceae was the most species rich family, while Rutaceae was the most abundant family. Atalantia monophylla was most frequent and abundant species and, with respect to basal area, Melia azedarach and Syzygium cumini were the dominant taxa. The recorded stem density was 1572 stems ha−1 and the mean forest basal area was 47.17 m2 ha−1. The results of cluster analysis revealed that Atalantia monophylla, characterised by a high ecological amplitude, had a wide distribution and was associated with species forming different communities. The study showed that Kondapalli forest is characterised by a fairly high species richness, which provides the baseline data on the floristic structure and diversity of this forest for better management and conservation.


2021 ◽  
Vol 78 (3) ◽  
Author(s):  
Emily V. Moran ◽  
Nikole Vannest ◽  
Mélaine Aubry-Kientz

Abstract Key message Model simulation results suggest that forests in the Sierra Nevada mountains of California will tend to increase in density and basal area in the absence of fire over the next century, and that climate change will favor increases in drought-tolerant species. Context Climate change is projected to intensify the natural summer drought period for Mediterranean-climate forests. Such changes may increase tree mortality, change species interactions and composition, and impact ecosystem services. Aims To parameterize SORTIE-ND, an individual-based, spatially explicit forest model, for forests in the Sierra Nevada, and to model forest responses to climate change. Methods We use 3 downscaled GCM projections (RCP 8.5) to project forest dynamics for 7 sites at different elevations. Results Basal area and stem density tended to increase in the absence of fire. Climate change effects differed by species, with more drought-tolerant species such as Jeffrey pine (Pinus jeffreyi A.Murray bis) and black oak (Quercus kelloggii Newb.) exhibiting increases in basal area and/or density. Conclusion Increasing forest density may favor carbon sequestration but could increase the risk of high-severity fires. Future analyses should include improved parameterization of reproduction and interactions of disturbance with climate effects.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 307 ◽  
Author(s):  
Jaime Roberto Padilla-Martínez ◽  
José Javier Corral-Rivas ◽  
Jaime Briseño-Reyes ◽  
Carola Paul ◽  
Pablito Marcelo López-Serrano ◽  
...  

The Mexican Sierra Madre Occidental (SMO) represents a region where hundreds of plant species reach the limits of their northern or southern range. The SMO also features a unique cultural diversity, and many communities living within the forest or in its close vicinity depend on the products and services that these forests provide. Our study was based on a large set of remeasured field plots placed in the forests of Durango which are part of the SMO. Using hierarchical clustering, three distinctly different forest types were identified based on structural differences and the relation between stem density and basal area. Maximum forest densities were estimated using a 0.975th quantile regression. Forest production (expressed as current periodic volume increment per unit of area and time) was estimated based on number of stems, forest density, mean height, and forest diversity. Forest density is the principal factors affecting periodic volume production. The discussion presented recommendations for the sustainable use of this unique natural resource. Maintaining minimum levels of residual density is key to ensuring the continued viability of the forests of the Mexican SMO. Future research is needed to identify optimum residual structures, productive residual densities, and desirable levels of biodiversity.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Martina Alrutz ◽  
Jorge Antonio Gómez Díaz ◽  
Ulf Schneidewind ◽  
Thorsten Krömer ◽  
Holger Kreft

Background: Tropical montane forests are important reservoirs of carbon and biodiversity but are threatened by deforestation and climate change. It is important to understand how forest structure and aboveground biomass change along gradients of elevation and succession. Questions: What are the interactive effect of elevation and two stages of succession on forest structure parameters? Studied species: Tree communities. Study site and dates: Cofre de Perote, Veracruz, Mexico. August to December 2015. Methods: We studied four sites along an elevational gradient (500, 1,500, 2,500, and 3,500 m). At each elevation and each forest type, we established five 20 × 20 m plots (n = 40 plots). Within each plot, we measured stem density, mean diameter at breast height (dbh), and tree height and derived basal area and aboveground biomass (AGB). Results: AGB peaked at 2,500 m and was significantly related to elevation and succession, with higher values in old-growth forests than in secondary forests at higher altitudes. Lower values of mean dbh and basal area were found at higher elevations. At the lowest elevation, both successional stages had the same values of stem density and AGB. At both lower elevations, secondary forests had higher values of dbh and basal area. There were high biomass stocks in the old-growth forest at 2,500 and 3,500 m. Conclusions: Old-growth forests at higher elevations are threatened by deforestation, consequently these remaining fragments must be preserved because of their storage capacity for biomass and their ability to mitigate climate change.


Healthcare ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 86
Author(s):  
Vito Alberto Pizzulli ◽  
Vito Telesca ◽  
Gabriela Covatariu

Climate change increasingly affects every aspect of human life. Recent studies report a close correlation with human health and it is estimated that global death rates will increase by 73 per 100,000 by 2100 due to changes in temperature. In this context, the present work aims to study the correlation between climate change and human health, on a global scale, using artificial intelligence techniques. Starting from previous studies on a smaller scale, that represent climate change and which at the same time can be linked to human health, four factors were chosen. Four causes of mortality, strongly correlated with the environment and climatic variability, were subsequently selected. Various analyses were carried out, using neural networks and machine learning to find a correlation between mortality due to certain diseases and the leading causes of climate change. Our findings suggest that anthropogenic climate change is strongly correlated with human health; some diseases are mainly related to risk factors while others require a more significant number of variables to derive a correlation. In addition, a forecast of victims related to climate change was formulated. The predicted scenario confirms that a prevalently increasing trend in climate change factors corresponds to an increase in victims.


2019 ◽  
pp. 20-45

This article examines how the global climate change discourse influences the implementation of national science policy in the area of energy technology, with a focus on industry and science collaborations and networks. We develop a set of theoretical propositions about how the issues in the global discourse are likely to influence research agendas and networks, the nature of industry-science linkages and the direction of innovation. The plausibility of these propositions is examined, using Estonia as a case study. We find that the global climate discourse has indeed led to the diversification of research agendas and networks, but the shifts in research strategies often tend to be rhetorical and opportunistic. The ambiguity of the global climate change discourse has also facilitated incremental innovation towards energy efficiency and the potentially sub-optimal lock-in of technologies. In sum, the Estonian case illustrates how the introduction of policy narratives from the global climate change discourse to the national level can shape the actual policy practices and also networks of actors in a complex and non-linear fashion, with unintended effects.


Author(s):  
Falak Shad Memon ◽  
M. Yousuf Sharjeel

<span>Torrential rains and floods have been causing irreplaceable losses to both human lives and environment in <span>Pakistan. This loss has reached to an extent of assively aggrieved situation to reinstate life at <span>operationally viable position. This paper unfolds the notion that only constructive paradigm shift to <span>overcome this phenomenon is vital as a strategy. Multiple levels of observations and on-site assessment <span>of various calamity-prone venues were considered to probe into this scenario. Some of the grave site in <span>Sindh and Punjab were observed and necessarily practicable measures were recommended to avoid loss to <span>human health and environment. The paper finds that a consistent drastic management authority on <span>national level with appropriate caliber and forecasting expertise can reduce the damage to human life and <span>environment to great extent. Weather forecasting system need to be installed at many appropriately <span>observed cities and towns in the country with adequate man power, funds and technical recourses. By <span>implementing the proper frame work of prevention and mitigation of floods country can save the major <span>costs cleanup and recovery. These measures are expected to reduce operational cost of state in terms of <span>GDP and GNP to restore life and environment.</span></span></span></span></span></span></span></span></span></span></span></span><br /><br class="Apple-interchange-newline" /></span>


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Agata Keller ◽  
Somsubhra Chattopadhyay ◽  
Mikołaj Piniewski

Abstract Background Flow variability is considered a fundamental factor affecting riverine biota. Any alterations to flow regime can influence freshwater organisms, and this process is expected to change with the projected climate change. This systematic map, therefore, aims at investigating the impacts of natural (resulting from climatic variability), anthropogenic (resulting from direct human pressure), and climate change-induced flow variability on fish and macroinvertebrates of temperate floodplain rivers in Central and Western Europe. Particular focus will be placed on the effects of extreme low and high discharges. These rare events are known to regulate population size and taxonomic diversity. Methods All studies investigating the effects of flow variability on metrics concerning freshwater fish and macroinvertebrates will be considered in the map, particularly metrics such as: abundance, density, diversity, growth, migration, recruitment, reproduction, survival, or their substitutes, such as biomonitoring indices. Relevant flow variability will reflect (1) anthropogenic causes: dams, reservoirs, hydroelectric facilities, locks, levees, water abstraction, water diversion, land-use changes, road culverts; (2) natural causes: floods, droughts, seasonal changes; or (3) climate change. Geographically, the map will cover the ecoregion of Central and Western Europe, focusing on its major habitat type, namely “temperate floodplain rivers and wetlands”. The review will employ search engines and specialist websites, and cover primary and grey literature. No date, language, or document type restrictions will be applied in the search strategy. We expect the results to be primarily in English, although evidence (meeting all eligibility criteria) from other languages within the study area will also be included. We will also contact relevant stakeholders and announce an open call for additional information. Eligibility screening will be conducted at two levels: title and abstract, and full text. From eligible studies the following information will be extracted: the cause of flow variability, location, type of study, outcomes, etc. A searchable database containing extracted data will be developed and provided as supplementary material to the map report. The final narrative will describe the quantity and key characteristics of the available evidence, and identify knowledge gaps and knowledge clusters, i.e. subtopics sufficiently covered by existing studies allowing full systematic review and meta-analysis.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Peixin Ren ◽  
Zelin Liu ◽  
Xiaolu Zhou ◽  
Changhui Peng ◽  
Jingfeng Xiao ◽  
...  

Abstract Background Vegetation phenology research has largely focused on temperate deciduous forests, thus limiting our understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions. Results Using satellite solar-induced chlorophyll fluorescence (SIF) and MODIS enhanced vegetation index (EVI) data, we applied two methods to evaluate temporal and spatial patterns of the end of the growing season (EGS) in subtropical vegetation in China, and analyze the dependence of EGS on preseason maximum and minimum temperatures as well as cumulative precipitation. Our results indicated that the averaged EGS derived from the SIF and EVI based on the two methods (dynamic threshold method and derivative method) was later than that derived from gross primary productivity (GPP) based on the eddy covariance technique, and the time-lag for EGSsif and EGSevi was approximately 2 weeks and 4 weeks, respectively. We found that EGS was positively correlated with preseason minimum temperature and cumulative precipitation (accounting for more than 73% and 62% of the study areas, respectively), but negatively correlated with preseason maximum temperature (accounting for more than 59% of the study areas). In addition, EGS was more sensitive to the changes in the preseason minimum temperature than to other climatic factors, and an increase in the preseason minimum temperature significantly delayed the EGS in evergreen forests, shrub and grassland. Conclusions Our results indicated that the SIF outperformed traditional vegetation indices in capturing the autumn photosynthetic phenology of evergreen forest in the subtropical region of China. We found that minimum temperature plays a significant role in determining autumn photosynthetic phenology in the study region. These findings contribute to improving our understanding of the response of the EGS to climate change in subtropical vegetation of China, and provide a new perspective for accurately evaluating the role played by evergreen vegetation in the regional carbon budget.


Sign in / Sign up

Export Citation Format

Share Document