scholarly journals A Literature Review on Hospital-Acquired Pneumonia (HAP), Community-Acquired Pneumonia (CAP), and Ventilator-Associated Pneumonia (VAP)

2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Pedram Bolboli Zade ◽  
Abbas Farahani ◽  
Mohammadreza Riyahi ◽  
Ali Laelabadi ◽  
Ali Salami Asl ◽  
...  

: One of the most dangerous respiratory diseases is pneumonia, one of the ten leading causes of death globally. Hospital-acquired pneumonia (HAP) is a common infection in hospitals, which is the second most common nosocomial infection and causes inflammation parenchyma. In Community-acquired pneumonia (CAP), we have various risk factors, including age and gender, and also some specific risk factors. Ventilator-associated pneumonia (VAP) is one of the deadliest nosocomial infections. According to the Centers for Disease Control and Prevention, VAP is pneumonia that develops about 48 hours of an artificial airway. Bacterial, viral, parasitic, primordial, and other species can cause these diseases. We discuss bacterial factors. Our goal is to gather information about HAP, CAP, and VAP to give people specific information. In this study, these three issues have been examined together, but in similar studies, each of them has been examined separately, and our type of study will be more helpful in diagnosis and treatment.

2005 ◽  
Vol 33 (1) ◽  
pp. 101-111 ◽  
Author(s):  
R. J. Boots ◽  
J. Lipman ◽  
R. Bellomo ◽  
D. Stephens ◽  
R. F. Heller

This study of ventilated patients investigated pneumonia risk factors and outcome predictors in 476 episodes of pneumonia (48% community-acquired pneumonia, 24% hospital-acquired pneumonia, 28% ventilator-associated pneumonia) using a prospective survey in 14 intensive care units within Australia and New Zealand. For community acquired pneumonia, mortality increased with immunosuppression (OR 5.32, CI 95% 1.58–17.99, P<0.01), clinical signs of consolidation (OR 2.43, CI 95% 1.09–5.44, P=0.03) and Sepsis-Related Organ Failure Assessment (SOFA) scores (OR 1.19, CI 95% 1.08–1.30, P<0.001) but improved if appropriate antibiotic changes were made within three days of intensive care unit admission (OR 0.42, CI 95% 0.20–0.86, P=0.02). For hospital-acquired pneumonia, immunosuppression (OR 6.98, CI 95% 1.16–42.2, P=0.03) and non-metastatic cancer (OR 3.78, CI 95% 1.20–11.93, P=0.02) were the principal mortality predictors. Alcoholism (OR 7.80, CI 95% 1.20–17.50, P<0.001), high SOFA scores (OR 1.44, CI 95% 1.20–1.75, P=0.001) and the isolation of “high risk” organisms including Pseudomonas aeruginosa, Acinetobacter spp, Stenotrophomonas spp and methicillin resistant Staphylococcus aureus (OR 4.79, CI 95% 1.43–16.03, P=0.01), were associated with increased mortality in ventilator-associated pneumonia. The use of non-invasive ventilation was independently protective against mortality for patients with community-acquired and hospital-acquired pneumonia (OR 0.35, CI 95% 0.18–0.68, P=0.002). Mortality was similar for patients requiring both invasive and non-invasive ventilation and non-invasive ventilation alone (21% compared with 20% respectively, P=0.56). Pneumonia risks and mortality predictors in Australian and New Zealand ICUs vary with pneumonia type. A history of alcoholism is a major risk factor for mortality in ventilator-associated pneumonia, greater in magnitude than the mortality effect of immunosuppression in hospital-acquired pneumonia or community-acquired pneumonia. Non-invasive ventilation is associated with reduced ICU mortality. Clinical signs of consolidation worsen, while rationalising antibiotic therapy within three days of ICU admission improves mortality for community-acquired pneumonia patients.


2005 ◽  
Vol 33 (1) ◽  
pp. 87-100 ◽  
Author(s):  
R. J. Boots ◽  
J. Lipman ◽  
R. Bellomo ◽  
D. Stephens ◽  
R. F. Heller

This study of ventilated patients investigated current clinical practice in 476 episodes of pneumonia (48% community-acquired pneumonia, 24% hospital-acquired pneumonia, 28% ventilator-associated pneumonia) using a prospective survey in 14 intensive care units (ICUs) within Australia and New Zealand. Diagnostic methods and confidence, disease severity, microbiology and antibiotic use were assessed. All pneumonia types had similar mortality (community-acquired pneumonia 33%, hospital-acquired pneumonia 37% and ventilator-associated pneumonia 24%, P=0.15) with no inter-hospital differences (P=0.08–0.91). Bronchoscopy was performed in 26%, its use predicted by admission hospital (one tertiary: OR 9.98, CI 95% 5.11–19.49, P<0.001; one regional: OR 6.29, CI 95% 3.24–12.20, P<0.001), clinical signs of consolidation (OR 3.72, CI 95% 2.09–6.62, P<0.001) and diagnostic confidence (OR 2.19, CI 95% 1.29–3.72, P=0.004). Bronchoscopy did not predict outcome (P=0.11) or appropriate antibiotic selection (P=0.69). Inappropriate antibiotic prescription was similar for all pneumonia types (11–13%, P=0.12) and hospitals (0–16%, P=0.25). Blood cultures were taken in 51% of cases. For community-acquired pneumonia, 70% received a third generation cephalosporin and 65% a macrolide. Third generation cephalosporins were less frequently used for mild infections (OR 0.38, CI 95% 0.16–0.90, P=0.03), hospital-acquired pneumonia (OR 0.40, CI 95% 0.23–0.72, P<0.01), ventilator-associated pneumonia (OR 0.04, CI 95% 0.02–0.13, P<0.001), suspected aspiration (OR 0.20, CI 95% 0.04–0.92, P=0.04), in one regional (OR 0.26, CI 95% 0.07–0.97, P=0.05) and one tertiary hospital (OR 0.14, CI 95% 0.03–0.73, P=0.02) but were more commonly used in older patients (OR 1.02, CI 95% 1.01–1.03, P=0.01). There is practice variability in bronchoscopy and antibiotic use for pneumonia in Australian and New Zealand ICUs without significant impact on patient outcome, as the prevalence of inappropriate antibiotic prescription is low. There are opportunities for improving microbiological diagnostic work-up for isolation of aetiological pathogens.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0249198
Author(s):  
Jing Jiao ◽  
Zhen Li ◽  
Xinjuan Wu ◽  
Jing Cao ◽  
Ge Liu ◽  
...  

Background Mortality among patients with hospital-acquired pneumonia (HAP) is quite high; however, information on risk factors for short-term mortality in this population remains limited. The aim of the current study was to identify the risk factors for mortality in bedridden patients with HAP during a 3-month observation period. Methods A secondary data analysis was conducted. In total, 1141 HAP cases from 25 hospitals were included in the analysis. Univariate and multilevel regression analyses were performed to identify the risk factors for mortality. Results During the 3-month observation period, there were 189 deaths among bedridden patients with HAP. The mortality rate in this study was 16.56%. Multilevel regression analysis showed that ventilator-associated pneumonia (OR = 2.034, 95%CI: 1.256, 3.296, p = 0.004), pressure injuries (OR = 2.202, 95%CI: 1.258, 3.852, p = 0.006), number of comorbidities (OR = 1.076, 95%CI: 1.016,1.140, p = 0.013) and adjusted Charlson Comorbidity Index score (OR = 1.210, 95%CI: 1.090, 1.343, p<0.001) were associated with an increased risk of mortality, while undergoing surgery with general anaesthesia (OR = 0.582, 95%CI: 0.368, 0.920, p = 0.021) was associated with a decreased risk of mortality. Conclusions The identification of risk factors associated with mortality is an important step towards individualizing care plans. Our findings may help healthcare workers select high-risk patients for specific interventions. Further study is needed to explore whether appropriate interventions against modifiable risk factors, such as reduced immobility complications or ventilator-associated pneumonia, could improve the prognoses.


2008 ◽  
Vol 52 (12) ◽  
pp. 4388-4399 ◽  
Author(s):  
Chris M. Pillar ◽  
Mohana K. Torres ◽  
Nina P. Brown ◽  
Dineshchandra Shah ◽  
Daniel F. Sahm

ABSTRACT Doripenem, a 1β-methylcarbapenem, is a broad-spectrum antibiotic approved for the treatment of complicated urinary tract and complicated intra-abdominal infections. An indication for hospital-acquired pneumonia including ventilator-associated pneumonia is pending. The current study examined the activity of doripenem against recent clinical isolates for the purposes of its ongoing clinical development and future longitudinal analysis. Doripenem and comparators were tested against 12,581 U.S. clinical isolates collected between 2005 and 2006 including isolates of Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus pneumoniae, Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter spp. MICs (μg/ml) were established by broth microdilution. By MIC90, doripenem was comparable to imipenem and meropenem in activity against S. aureus (methicillin susceptible, 0.06; resistant, 8) and S. pneumoniae (penicillin susceptible, ≤0.015; resistant, 1). Against ceftazidime-susceptible Enterobacteriaceae, the MIC90 of doripenem (0.12) was comparable to that of meropenem (0.12) and superior to that of imipenem (2), though susceptibility of isolates exceeded 99% for all evaluated carbapenems. The activity of doripenem was not notably altered against ceftazidime-nonsusceptible or extended-spectrum β-lactamase screen-positive Enterobacteriaceae. Doripenem was the most potent carbapenem tested against P. aeruginosa (MIC90/% susceptibility [%S]: ceftazidime susceptible = 2/92%S, nonsusceptible = 16/61%S; imipenem susceptible = 1/98.5%S, nonsusceptible = 8/56%S). Against imipenem-susceptible Acinetobacter spp., doripenem (MIC90 = 2, 89.1%S) was twice as active by MIC90 as were imipenem and meropenem. Overall, doripenem potency was comparable to those of meropenem and imipenem against gram-positive cocci and doripenem was equal or superior in activity to meropenem and imipenem against Enterobacteriaceae, including β-lactam-nonsusceptible isolates. Doripenem was the most active carbapenem tested against P. aeruginosa regardless of β-lactam resistance.


2013 ◽  
pp. 87-90
Author(s):  
Alessia Rosato ◽  
Claudio Santini

Introduction The traditional classification of Pneumonia as either community acquired (CAP) or hospital acquired (HAP) reflects deep differences in the etiology, pathogenesis, approach and prognosis between the two entities. Health-Care Associated Pneumonia (HCAP) develops in a heterogeneous group of patients receiving invasive medical care or surgical procedures in an outpatient setting. For epidemiology and outcomes, HCAP closely resembles HAP and possibly requires an analogous therapeutic regimen effective against multidrug-resistant pathogens. Materials and methods We reviewed the pertinent literature and the guidelines for the diagnosis and management of HCAP to analyze the evidence for the recommended approach. Results Growing evidence seems to confirm the differences in epidemiology and outcome between HCAP and CAP but fails to confirm any real advantage in pursuing an aggressive treatment for all HCAP and CAP patients. Discussion Further investigations are needed to establish the optimal treatment approach according to the different categories of patients and the different illness severities. Keywords Health Care Associated Pneumonia (HCAP); Community Acquired Pneumonia (CAP); Hospital Acquired Pneumonia (HAP); Multidrug-resistant (MDR) Pathogens


Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1030
Author(s):  
Abu Sadat Mohammad Sayeem Bin Shahid ◽  
Tahmina Alam ◽  
Lubaba Shahrin ◽  
K. M. Shahunja ◽  
Md. Tanveer Faruk ◽  
...  

Hospital acquired pneumonia (HAP) is common and often associated with high mortality in children aged five or less. We sought to evaluate the risk factors and outcome of HAP in such children. We compared demographic, clinical, and laboratory characteristics in children <5 years using a case control design during the period of August 2013 and December 2017, where children with HAP were constituted as cases (n = 281) and twice as many randomly selected children without HAP were constituted as controls (n = 562). HAP was defined as a child developing a new episode of pneumonia both clinically and radiologically after at least 48 h of hospitalization. A total of 4101 children were treated during the study period. The mortality was significantly higher among the cases than the controls (8% vs. 4%, p = 0.014). In multivariate logistic regression analysis, after adjusting for potential confounders, it was found that persistent diarrhea (95% CI = 1.32–5.79; p = 0.007), severe acute malnutrition (95% CI = 1.46–3.27; p < 0.001), bacteremia (95% CI = 1.16–3.49; p = 0.013), and prolonged hospitalization of >5 days (95% CI = 3.01–8.02; p < 0.001) were identified as independent risk factors for HAP. Early identification of these risk factors and their prompt management may help to reduce HAP-related fatal consequences, especially in resource limited settings.


Medwave ◽  
2013 ◽  
pp. e5637-e5637
Author(s):  
Liudmila Carnesoltas Suarez ◽  
Miguel Ángel Serra Valdés ◽  
Rosario O’Farrill Lazo

Author(s):  
David D. M. Rosario ◽  
Anitha Sequeira

Background: Pneumonia is the most common hospital acquired infection in the intensive care unit. One of the causes for hospital acquired pneumonia is ventilator associated pneumonia. Tracheostomy is known to prevent occurrence of ventilator associated pneumonia as it decreases the respiratory dead space, assists in better clearance of secretions and prevents chances of aspiration. Generally, tracheostomy is done after 2 weeks of endotracheal intubation to prevent tracheal complications. The aim of this study is to identify the incidence of ventilator associated pneumonia in tracheostomised and non tracheostomised patients and to see if early tracheostomy can prevent development of ventilator associated pneumonia.Methods: The study was conducted at a tertiary care hospital during a period of four years. 100 patients who were on mechanical ventilation for more than 7 days where taken up for the study. APACHE 4 scoring system was used. The incidence of Ventilator associated pneumonia in tracheostomised and non tracheostomised patients was studied.Results: In our study the total incidence of VAP was 44 %. In our study out of the 42 patients who had undergone tracheostomy 13 (30.95%) patients had ventilator associated pneumonia. Among the non-tracheostomised patients 31 (53.44%) out of 58 patients developed ventilator associated pneumonia. In our study the incidence of ventilator associated pneumonia was much lesser (12%) in patients who underwent tracheostomy in the period 7 to 10 days after mechanical ventilation, whereas in those who underwent tracheostomy after 11 days incidence of ventilator associated pneumonia was much higher.Conclusions: Our study showed that the incidence of ventilator associated pneumonia was much higher among non tracheostomised patients compared to patients who underwent tracheostomy. Hence patients undergoing earlier tracheostomy had a clear advantage than those undergoing tracheostomy late or non tracheostomised patients in preventing ventilator associated pneumonia.


Sign in / Sign up

Export Citation Format

Share Document