scholarly journals Visceral adiposity syndrome and cardiometabolism

2021 ◽  
Vol 52 (2) ◽  
pp. 144-150
Author(s):  
Heno Lopes ◽  
Brent Egan

The distribution of fat in the human body is related to hemodynamic and metabolic homeostasis. Brown fat is inversely related to body mass index and is associated with a lower probability of developing diabetes. Beige adipose tissue shares some functional characteristics with brown adipose tissue. White adipose tissue constitutes the majority of the fatty tissue and is mainly distributed in the subcutaneous and abdominal cavity. Intra-abdominal white fat has gained prominence in recent years for its association with cardiovascular risk factors and higher cardiovascular mortality. This review article discusses the human adaptation in the environment, a sympathovagal and hypothalamic-pituitary-adrenal imbalance as a possible cause of increased visceral adiposity and its consequences on cardiometabolism.

1985 ◽  
Vol 5 (2) ◽  
pp. 175-184 ◽  
Author(s):  
Christine M. Williams ◽  
Rodney Ellis

Male rats were treated with triiodothyronine in the drinking water for 12 days. In vitro rates of isoprenaline stimulated lipolysis were significantly greater in brown but not white adipose tissue. Rates of [14C]glucose incorporation into triacylglycerols were significantly reduced in BAT (brown adipose tissue) and WAT (white adipose tissue) under basal and isoprenaline stimulated conditions, in a second experiment, hyperthyroid animals showed impaired weight gain, despite increased food intake during t9 days' treatment. Energy expenditure on days 5 and 12, and BAT core temperature differences (TBAT – TCORE) on day 19, were significantly greater than in control animals. Epididymal white fat pad weight was reduced and interscapular brown fat pad weight increased by triiodothyronine treatment.


Endocrinology ◽  
2003 ◽  
Vol 144 (10) ◽  
pp. 4306-4314 ◽  
Author(s):  
András K. Fülöp ◽  
Anna Földes ◽  
Edit Buzás ◽  
Krisztina Hegyi ◽  
Ildikó H. Miklós ◽  
...  

Histamine has been referred to as an anorexic factor that decreases appetite and fat accumulation and affects feeding behavior. Tuberomammillary histaminergic neurons have been implicated in central mediation of peripheral metabolic signals such as leptin, and centrally released histamine inhibits ob gene expression. Here we have characterized the metabolic phenotype of mice that completely lack the ability to produce histamine because of targeted disruption of the key enzyme in histamine biosynthesis (histidine decarboxylase, HDC). Histochemical analyses confirmed the lack of HDC mRNA, histamine immunoreactivity, and histaminergic innervation throughout the brain of gene knockout mouse. Aged histamine-deficient (HDC−/−) mice are characterized by visceral adiposity, increased amount of brown adipose tissue, impaired glucose tolerance, hyperinsulinemia, and hyperleptinemia. Histamine-deficient animals are not hyperphagic but gain more weight and are calorically more efficient than wild-type controls. These metabolic changes presumably are due to the impaired regulatory loop between leptin and hypothalamic histamine that results in orexigenic dominance through decreased energy expenditure, attenuated ability to induce uncoupling protein-1 mRNA in the brown adipose tissue and defect in mobilizing energy stores. Our results further support the role of histamine in regulation of energy homeostasis.


Endocrinology ◽  
2016 ◽  
Vol 157 (9) ◽  
pp. 3517-3528 ◽  
Author(s):  
Almudena Gómez-Hernández ◽  
Nuria Beneit ◽  
Óscar Escribano ◽  
Sabela Díaz-Castroverde ◽  
Gema García-Gómez ◽  
...  

Obesity is one of the major risk factors for the development of cardiovascular diseases and is characterized by abnormal accumulation of adipose tissue, including perivascular adipose tissue (PVAT). However, brown adipose tissue (BAT) activation reduces visceral adiposity. To demonstrate that severe brown fat lipoatrophy might accelerate atherosclerotic process, we generated a new mouse model without insulin receptor (IR) in BAT and without apolipoprotein (Apo)E (BAT-specific IR knockout [BATIRKO];ApoE−/− mice) and assessed vascular and metabolic alterations associated to obesity. In addition, we analyzed the contribution of the adipose organ to vascular inflammation. Brown fat lipoatrophy induces visceral adiposity, mainly in gonadal depot (gonadal white adipose tissue [gWAT]), severe glucose intolerance, high postprandial glucose levels, and a severe defect in acute insulin secretion. BATIRKO;ApoE−/− mice showed greater hypertriglyceridemia than the obtained in ApoE−/− and hypercholesterolemia similar to ApoE−/− mice. BATIRKO;ApoE−/− mice, in addition to primary insulin resistance in BAT, also showed a significant decrease in insulin signaling in liver, gWAT, heart, aorta artery, and thoracic PVAT. More importantly, our results suggest that severe brown fat lipoatrophy aggravates the atherosclerotic process, characterized by a significant increase of lipid depots, atherosclerotic coverage, lesion size and complexity, increased macrophage infiltration, and proinflammatory markers expression. Finally, an increase of TNF-α and leptin as well as a decrease of adiponectin by BAT, gWAT, and thoracic PVAT might also be responsible of vascular damage. Our results suggest that severe brown lipoatrophy aggravates atherosclerotic process. Thus, BAT activation might protect against obesity and its associated metabolic alterations.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1129 ◽  
Author(s):  
Michael E. Symonds ◽  
Peter Aldiss ◽  
Mark Pope ◽  
Helen Budge

Brown adipose tissue (BAT) possesses a unique uncoupling protein (UCP1) which, when activated, enables the rapid generation of heat and the oxidation of lipids or glucose or both. It is present in small amounts (~15–350 mL) in adult humans. UCP1 is rapidly activated at birth and is essential in preventing hypothermia in newborns, who rapidly generate large amounts of heat through non-shivering thermogenesis. Since the “re-discovery” of BAT in adult humans about 10 years ago, there has been an exceptional amount of research interest. This has been accompanied by the establishment of beige fat, characterised as discrete areas of UCP1-containing cells dispersed within white adipocytes. Typically, the amount of UCP1 in these depots is around 10% of the amount found in classic BAT. The abundance of brown/beige fat is reduced with obesity, and the challenge is to prevent its loss with ageing or to reactivate existing depots or both. This is difficult, as the current gold standard for assessing BAT function in humans measures radio-labelled glucose uptake in the fasted state and is usually dependent on cold exposure and the same subject can be found to exhibit both positive and negative scans with repeated scanning. Rodent studies have identified multiple pathways that may modulate brown/beige fat function, but their direct relevance to humans is constrained, as these studies typically are undertaken in cool-adapted animals. BAT remains a challenging organ to study in humans and is able to swiftly adapt to changes in the thermal environment and thus enable rapid changes in heat production and glucose oxidation.


1992 ◽  
Vol 70 (1) ◽  
pp. 171-179 ◽  
Author(s):  
John S. Hayward ◽  
Paul A. Lisson

Species from all extant families of marsupials and monotremes were examined to clarify whether these mammalian subclasses possess brown adipose tissue. To optimize the chance of finding this tissue, special emphasis was given to sampling species adapted to colder regions, species with small adult body size, and individuals at a stage of development equivalent to the newborn stage of placentals (late pouch life in the case of marsupials). Evidence based on gross morphology and light, electron, and fluorescence microscopy failed to show the presence of brown adipose tissue in any marsupial or monotreme. All adipose tissue was typical white fat, including special instances where multilocularity of lipid droplets occurred in association with white adipocyte development or with fat mobilization resulting from nutritional or cold stress. These results, combined with lack of positive identification of brown adipose tissue in birds or other vertebrates, indicate that brown adipose tissue is unique to eutherian (placental) mammals and probably evolved early in the radiation of this subclass. This uniqueness presents the opportunity to suggest a more satisfactory name for the subclass: Thermolipia (from the Greek for "warm fat") or, commonly, thermolipials.


Bionatura ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 879-882
Author(s):  
Francisco Santacruz-Hidalgo ◽  
Eliana Viscarra-Sanchez

Brown adipose tissue is one of the principal generators of heat in the body; due to the activation of many hormones and receptors, it takes a fundamental role in thermogenesis. However recent studies have proved that this is not its only function. Brown adipose tissue could also act as an endocrine organ, which means that it releases chemical substances to the blood and regulate some activities in the organism. This cell communication process is momentous, since allowing cells to exchange physicochemical information with the environment and other cells in the body could be a relevant field of study in treatments of obesity, diabetes and other diseases related with body weight. This paper offers an overview of different transcriptional factors, endocrine regulation and therapeutic applications of the brown fat tissue, and also the distinctions that it has with white adipose tissue and beige adipose tissue.


2020 ◽  
Vol 13 (8) ◽  
pp. 76
Author(s):  
C. E. Abra ◽  
J. R. Assis

Obesity is a result of energy imbalance caused by excess caloric intake in relation to energy demand. Metabolic functions and fat behavior led to the classification of adipose tissue deposits into three types, white, brown and beige. White adipose tissue (BAT) and brown adipose tissue (WAT) have distinct functions, expending fat on heat production and storing fat as an energy source, respectively. However, brown adipocytes can appear in WAT by a process called WAT darkening, forming the beige adipose tissue. Research suggests that polyphenols play a vital role in preventing and managing obesity and its comorbidities. In this context, we aimed to perform a literature review on the use of the main antiobesity polyphenols as well as the mechanisms by which they perform effects. The main antiobesity polyphenols are catechins, resveratrol, quercetin, berberine, curcumin, thymol, chrysin, magnolol, honokiol, capsaicin and capsainoids. And the mechanisms of its effects are linked to gene transcription (PGC-1α, PRDM16 and UPC1) for the modification of WAT in beige adipose tissue that resembles morphophysiological with BAT, favoring fat burning by β-oxidation of fatty acids, translating into potential use for reduction and prevention of body fat accumulation. Therefore, the action of these polyphenols for the loss and reduction in body fat accumulation is strongly evidenced. Future studies should be directed to the use of polyphenols in humans, so that they can stipulate adequate doses for antiobesity use.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anna-Claire Pilkington ◽  
Henry A. Paz ◽  
Umesh D. Wankhade

Adipose tissue (AT) is classified based on its location, physiological and functional characteristics. Although there is a clear demarcation of anatomical and molecular features specific to white (WAT) and brown adipose tissue (BAT), the factors that uniquely differentiate beige AT (BeAT) remain to be fully elaborated. The ubiquitous presence of different types of AT and the inability to differentiate brown and beige adipocytes because of similar appearance present a challenge when classifying them one way or another. Here we will provide an overview of the latest advances in BeAT, BAT, and WAT identification based on transcript markers described in the literature. The review paper will highlight some of the difficulties these markers pose and will offer new perspectives on possible transcript-specific identification of BeAT. We hope that this will advance the understanding of the biology of different ATs. In addition, concrete strategies to distinguish different types of AT may be relevant to track the efficacy and mechanisms around interventions aimed to improve metabolic health and thwart excessive weight gain.


2017 ◽  
Vol 98 (2) ◽  
pp. 100-108 ◽  
Author(s):  
Leidyanne Ferreira Gonçalves ◽  
Thaissa Queiroz Machado ◽  
Camila Castro-Pinheiro ◽  
Nathalia Guimaraes de Souza ◽  
Karen Jesus Oliveira ◽  
...  

Author(s):  
Aleksandra Jankovic ◽  
Vesna Otasevic ◽  
Ana Stancic ◽  
Biljana Buzadzic ◽  
Aleksandra Korac ◽  
...  

AbstractGreat progress has been made in our understanding of the browning process in white adipose tissue (WAT) in rodents. The recognition that i) adult humans have physiologically inducible brown adipose tissue (BAT) that may facilitate resistance to obesity and ii) that adult human BAT molecularly and functionally resembles beige adipose tissue in rodents, reignited optimism that obesity and obesity-related diabetes type 2 can be battled by controlling the browning of WAT. In this review the main cellular mechanisms and molecular mediators of browning of WAT in different physiological states are summarized. The relevance of browning of WAT in metabolic health is considered primarily through a modulation of biological role of fat tissue in overall metabolic homeostasis.


Sign in / Sign up

Export Citation Format

Share Document