scholarly journals Desafíos para la salud de las vacas durante el periodo de transición. Uso de monensina

2020 ◽  
Vol 34 ◽  
pp. 7-16
Author(s):  
Estefanía Alcázar ◽  
Silvia Martínez ◽  
Josefa Madrid ◽  
Pablo Larrosa ◽  
Fuensanta Hernández

El objetivo de este trabajo fue realizar una revisión de los efectos derivados del uso de monensina como alternativa para afrontar con mayor éxito el periodo de transición en vacas lecheras. En las vacas de leche, la transición de la preñez al inicio de la lactación es un periodo crítico que se caracteriza por presentar una mayor incidencia de enfermedades. En este periodo, el riesgo de que se presenten trastornos metabólicos y enfermedades está relacionado con el balance energético negativo en el que se encuentra la vaca, hecho que conlleva una movilización de nutrientes desde las reservas tisulares. Una de las posibles soluciones para mejorar el balance de nutrientes durante el período de transición consiste en administrar ionóforos como la monensina que actúan modificando la población microbiana del rumen. Los efectos beneficiosos de la monensina se han asociado a la producción de precursores gluconeogénicos a nivel ruminal, lo que originaría mayor disponibilidad de glucosa y la consiguiente mejora del estatus energético. Con el uso de monensina, a nivel sanguíneo se ha observado un descenso de β-hidroxibutirato, y ácidos grasos no esterificados. También han sido atribuidos efectos beneficiosos sobre la funcionalidad hepática, la absorción de ciertos minerales, la función inmune y la excreción de metano. En definitiva, el efecto positivo de la MON sobre el balance energético y la utilización de nutrientes reduciría la movilización de reservas tisulares, minimizando el riesgo de desórdenes metabólicos, mejorando la salud y por tanto el rendimiento de la vaca lechera. The aim of this research was to carry out a review of the use of monensin in dairy cows as a choice to approach more successfully the transition period. In dairy cows, the transition for the pregnancy to the beginning of lactation is a critical period which is characterized by display a higher incidence of diseases. The risk of metabolic disorders and other diseases during this time is allied to the state of negative energy balance in which the cow is, fact that involves a mobilization of nutrients from the tissue reserves. One of the possible solutions to improve the nutrient balance during the transition period is based on dispense ionophores such as monensin who modify the microbial population of the rumen. The beneficial effects of monensin have been associated with the production of gluconeogenic precursors at the ruminal level which would lead to greater availability of glucose and the consequent improvement of the energetic status. At the blood level it has been noted a decrease of β-hydroxybutyrate and non-esterified fatty acids. Beneficial effects have also been attributed to liver function, absorption of certain minerals and immune function.In brief, the positive effect of monensin on the energy balance and the use of nutrients would reduce the mobilization of tissue reserves, playing down the risk of metabolic disorders, improving the health and therefore the performance of the dairy cow.

2021 ◽  
Vol 4 (5) ◽  
pp. 130-141
Author(s):  
Mylena Garcia Proto ◽  
◽  
Milena Cristina Bernardo de Barros ◽  
Bruna Stanigher Barbosa ◽  
◽  
...  

With the increased production demand in the dairy industry comes the need to keep animals healthier, thus avoiding large economic losses due to low productivity. During the transition period, dairy cows are susceptible to the onset of infectious diseases and metabolic imbalances due to the big change in their diet, it could be poor in needed nutrients to maintain the animal's body score, with this, the dry matter intake decreases up to 40% while energy expenditure increases due to milk and colostrum production, getting into a negative energy balance state.


2017 ◽  
Vol 45 (1) ◽  
pp. 8
Author(s):  
Tatiele Mumbach ◽  
Raquel Fraga e Silva Raimondo ◽  
Claudia Faccio Demarco ◽  
Vanessa Oliveira Freitas ◽  
Rodrigo Chaves Barcellos Grazziotin ◽  
...  

Background: In order to reduce the effects of a negative energy balance, some measures have been taken into account in nutritional management during the transition period. The use of yeast, has been a good alternative used to improve the rumen metabolism and helping the adjustment of the microbiotato the new diet. The aim of the study was to evaluate the effects of supplementing a combination of yeast culture and hydrolyzed yeast on the metabolism of dairy cows during the transition period.Materials, Methods & Results: The experiment was conducted in a semi-extensive system, using 20 Holstein cows, divided equally into a control group (CG) and a supplemented group (SG). The SG received 28 g/animal/day of a combination of yeast culture and hydrolyzed yeast from 20 ± 2 days pre-calving until early lactation (18 ± 3 days). Serum concentrations of non-esterified fatty acids (NEFA), albumin and urea were determined at calving, and for three time points during the early postpartum period and three time points during the early lactation period. Regarding energy metabolism, prepartum concentrations of NEFA were higher than the physiological standard in both groups. However, NEFA, albumin and urea decreased during the early postpartum period in the supplemented animals and could be attributed to the yeast in enhancing ruminal microorganisms’ cellulolytic capacity, increasing fibre digestibility and starch utilization.Discussion: The increased concentration of non-esterified fatty acids (NEFA) due to the mobilization of fat deposits that happens in the transition period, especially in the postpartum period reflects the cow’s adaptation to the negative energy balance (NEB). The lower concentrations of NEFA observed in the present study could be attributed to the effect of the yeast in enhancing the ruminal microorganisms’ cellulolytic capacity. The control cows had a BCS within the recommended range while the supplemented group had it close to the minimal limit proposed for this period. Thus, supplemented cows lost less BCS during the early postpartum period, had a lower BCS loss during the experimental period and had lower NEFA concentration that the CG. It was possible to observe a difference in serum albumin and urea between treatments only in the postpartum period. Besides showing no significant effect in BCS on prepartum period, control cows had a BCS within the recommended range while the supplemented group had it close to the minimal limit proposed for this period. Cows with high BCS prepartum had higher plasma NEFA before and after calving. It can be observed in the present study in both groups. However, a positive effect in prevent subclinical disorders might be attributed to YC, since the SG showed low NEFA plasma levels compared to the CG.  Thus, supplemented cows lost less BCS during the early postpartum period, had a lower BCS loss during the experimental period and had lower NEFA concentration that the CG. There is a negative correlation between BCS and NEFA in the early postpartum period and this information explains the results observed in the present study where BCS declines in the SG are followed by a NEFA increase. This is not so marked in the CG, indicating that SG supplementation can act by improving digestibility. Yeast supplementation promotes higher output energy, enhancing postpartum performance in dairy cows. Yeast supplementation showed benefits in early lactation compared to the prepartum and early postpartum periods, suggesting that supplementation has to have an adaptation period to be effective in protein synthesis. In conclusion, supplementation with a combination of yeast culture and hydrolyzed yeast to cows during the transition period can positively influence the energy and protein metabolism, reducing the collateral effects of negative energy balance.


2017 ◽  
Vol 57 (6) ◽  
pp. 1069 ◽  
Author(s):  
J. M. Havlin ◽  
P. H. Robinson ◽  
J. E. Garrett

Early lactation dairy cows are frequently in negative energy balance and susceptible to ketosis, fatty liver and metritis. Because of its anti-lipolytic properties, the B-vitamin niacin could reduce negative energy balance by reducing non-esterified fatty acids for ketogenesis, thereby reducing hyperketonemia. We determined effects of feeding ruminally protected niacin (RPNi) on lipolysis during the fresh period using blood non-esterified fatty acids concentrations as a ketosis indicator, blood β-hydroxybutyrate concentrations as an indicator of lipid mobilisation, as well as dry matter (DM) intake, milk and milk component yields, in 906 multi-parity Holstein cows from ~14 days before calving through the immediate fresh period. Prior to calving, cows were co-mingled in one pen and fed the same total mixed ration without RPNi. Between 24 and 36 h postpartum, cows were assigned to fresh pens and fed the same fresh cow total mixed ration, except for RPNi at 0, 3.5, 7 or 14 g niacin/cow.day. During the close-up and fresh periods, cows were sampled for tail vein blood. Milk yield and composition was measured twice at a 140-days interval in the fresh pens postpartum. The 3.5 g/day RPNi feeding tended to decrease ketosis prevalence (% of cows with β-hydroxybutyrate ≥ 1.44 mg/dL) from 36% to 20% (P = 0.06) and also tended (P = 0.07) to increase DM intake from 19.3 to 21.5 kg DM/day versus Control. The RPNi effect tended to increase with duration of RPNi feeding, with no effects at 7 ± 3.9 days in milk, but milk (P = 0.10), milk fat (P = 0.11) and milk energy (P = 0.07) yields tending to be higher at 21 ± 3.9 days in milk. Conversely, 14 g/day RPNi had no effect on ketosis prevalence or DM intake. However, milk (P = 0.10), milk fat (P = 0.11) and milk energy (P = 0.07) yields tended to decrease versus Control. Overall, low level RPNi feeding was judged to improve health and production in fresh cows, but higher feeding levels had clear negative impacts.


Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 342 ◽  
Author(s):  
Jennifer Meyer ◽  
Susanne Ursula Daniels ◽  
Sandra Grindler ◽  
Johanna Tröscher-Mußotter ◽  
Mohamadtaher Alaedin ◽  
...  

Dairy cows are metabolically challenged during the transition period. Furthermore, the process of parturition represents an energy-consuming process. The degree of negative energy balance and recovery from calving also depends on the efficiency of mitochondrial energy generation. At this point, L-carnitine plays an important role for the transfer of fatty acids to the site of their mitochondrial utilisation. A control (n = 30) and an L-carnitine group (n = 29, 25 g rumen-protected L-carnitine per cow and day) were created and blood samples were taken from day 42 ante partum (ap) until day 110 post-partum (pp) to clarify the impact of L-carnitine supplementation on dairy cows, especially during the transition period and early puerperium. Blood and clinical parameters were recorded in high resolution from 0.5 h to 72 h pp. L-carnitine-supplemented cows had higher amounts of milk fat in early lactation and higher triacylglyceride concentrations in plasma ap, indicating increased efficiency of fat oxidation. However, neither recovery from calving nor energy balance and lipomobilisation were influenced by L-carnitine.


2016 ◽  
Vol 19 (1) ◽  
pp. 197-204 ◽  
Author(s):  
A. Nowroozi-Asl ◽  
N. Aarabi ◽  
A. Rowshan-Ghasrodashti

AbstractThe transition from late gestation to early lactation is a critical period in a dairy cow’s life so that dairy cows undergo tremendous changes during this period.The aim of this study was to determine blood levels of ghrelin, leptin, glucose, β-ydroxybutyrate (BHB), non-esterified fatty acids (NEFA), triglycerides (TG), triiodothyronine (T3) and thyroxine (T4) in dairy Holstein cows (n = 20) and their correlations during the transition period.Blood samples were collected weekly from 3 wk antepartum to 6 wk postpartum from 20 high-yielding Holstein-Friesian cows. Ghrelin and leptin of plasma and glucose, BHB, NEFA, TG, T3, T4 of serum were then measured.Early lactation cows showed significantly higher (p<0.05) values of ghrelin, BHB and NEFA, and lower levels of leptin, TG, T3 and T4 (p<0.05) compared to late dry cows. Serum concentrations of glucose did not differ significantly at any time (P>0.05).Plasma ghrelin concentrations showed positive correlations with the serum BHB and NEFA (p<0.01), while plasma ghrelin had negative correlations (p<0.01) with leptin, TG, T3 and T4. In addition, no significant correlation (p>0.05) was found between ghrelin and glucose.The results of the study showed that blood ghrelin, leptin, BHB and NEFA levels are sensitive indicators of the energy balance during the peri-partum period in dairy cows and glucose values may not be considered as a precise indicator of negative energy balance in dairy cows.


Proceedings ◽  
2020 ◽  
Vol 73 (1) ◽  
pp. 9
Author(s):  
Deise Aline Knob ◽  
André Thaler Neto ◽  
Helen Schweizer ◽  
Anna Weigand ◽  
Roberto Kappes ◽  
...  

Depending on the breed or crossbreed line, cows have to cope with a more or less severe negative energy balance during the period of high milk yields in early lactation, which can be detected by beta-hydroxybutyrate (BHBA) and non-esterified fatty acids (NEFAs) in blood. Preventing cows from undergoing a severe negative energy balance by breeding and/or feeding measures is likely to be supported by the public and may help to improve the sustainability of milk production. The aim was to compare BHBA and NEFA concentrations in the blood of Holstein and Simmental cows and their crosses during the prepartum period until the end of lactation. In total, 164 cows formed five genetic groups according to their theoretic proportion of Holstein and Simmental genes as follows: Holstein (100% Holstein; n = 9), R1-Hol (51–99% Holstein; n = 30), F1 crossbreds (50% Holstein, 50% Simmental; n = 17), R1-Sim (1–49% Holstein; n = 81) and Simmental (100% Simmental; n = 27). NEFA and BHBA were evaluated once a week between April 2018 and August 2019. A mixed model analysis with fixed effects breed, week (relative to calving), the interaction of breed and week, parity, calving year, calving season, milking season, and the repeated measure effect on cows was used. Holstein cows had higher NEFAs (0.196 ± 0.013 mmol/L), and Simmental cows had the lowest NEFA concentrations (0.147 ± 0.008 mmol/L, p = 0.03). R1-Sim, F1 and R1-Hol cows had intermediate values (0.166 ± 0.005, 0.165 ± 0.010, 0.162 ± 0.008 mmol/L; respectively). The highest NEFA value was found in the first week after calving (0.49 ± 0.013 mmol/L). BHBA did not differ among genetic groups (p = 0.1007). There was, however, an interaction between the genetic group and week (p = 0.03). While Simmental, R1-Sim and F1 cows had the highest BHBA value, the second week after calving (0.92 ± 0.07 and 1.05 ± 0.04, and 1.10 ± 0.10 mmol/L, respectively), R1-Hol and Holstein cows showed the BHBA peak at the fourth week after calving (1.16 ± 0.07 and 1.36 ± 0.12 mmol/L, respectively). Unexpectedly, Holstein cows had a high BHBA peak again at week 34 after calving (1.68 ± 0.21 mmol/L). The genetic composition of the cows affects NEFA and BHBA. Simmental and R1-Sim cows mobilize fewer body reserves after calving. Therefore, dairy cows with higher degrees of Simmental origin might be more sustainable in comparison with Holstein genetics in the present study.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1674
Author(s):  
Ilona Strączek ◽  
Krzysztof Młynek ◽  
Agata Danielewicz

A significant factor in improving the performance of dairy cows is their physiological ability to correct a negative energy balance (NEB). This study, using Simmental (SIM) and Holstein-Friesian (HF) cows, aimed to assess changes in NEB (non-esterified fatty acid; body condition score; and C16:0, C18:0, and C18:1) and its effect on the metabolic efficiency of the liver (β-hydroxybutyrate and urea). The effects of NEB on daily yield, production at peak lactation and its duration, and changes in selected milk components were assessed during complete lactation. Up to peak lactation, the loss of the body condition score was similar in both breeds. Subsequently, SIM cows more efficiently restored their BCS. HF cows reached peak lactation faster and with a higher milk yield, but they were less able to correct NEB. During lactation, their non-esterified fatty acid, β-hydroxybutyrate, C16:0, C18:0, C18:1, and urea levels were persistently higher, which may indicate less efficient liver function during NEB. The dynamics of NEB were linked to levels of leptin, which has anorectic effects. Its content was usually higher in HF cows and during intensive lactogenesis. An effective response to NEB may be exploited to improve the production and nutritional properties of milk. In the long term, it may extend dairy cows’ productive life and increase lifetime yield.


2009 ◽  
Vol 57 (1) ◽  
pp. 139-146
Author(s):  
Andrea Győrffy ◽  
Mónika Keresztes ◽  
Vera Faigl ◽  
Vilmos Frenyó ◽  
Margit Kulcsár ◽  
...  

In the regulation of energy metabolism, the liver plays an important role in the reinforcement of energy production. In periparturient cows the energy homeostasis turns into a negative energy balance that may shift the physiological regulation of energy balance towards pathological processes. Propylene glycol (PG), as a complementary source of energy used in the nutrition of dairy cows, alters systemic thyroid hormone economy; however, the exact mechanism through which highly glycogenic feed supplements impact liver metabolism is little known. Previous studies showed that only leptin receptors are expressed in the liver of cows, and now we report that leptin mRNA is expressed in the liver of cows as well. The present results show that the mRNA of leptin and its receptors are differentially modulated by the increased energy content of the feed consumed. Simultaneous changes in hepatic type I deiodinase activity suggest that hepatic modulation of the leptin system by PG supplementation may be mediated by an increased local thyroxine-triiodothyronine conversion. Since PG supplementation with simultaneous T4–T3 turnover and increased hepatic leptin- and short-form leptin receptor mRNA were not associated with a significant change in hepatic total lipid levels, it is suggested that the leptin system, directly or indirectly modulated by thyroid hormones, may represent a local defence mechanism to prevent fatty liver formation.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1478
Author(s):  
Tainara Cristina Michelotti ◽  
Erminio Trevisi ◽  
Johan S. Osorio

The objective of the present study was to evaluate the effects of an antioxidant and anti-inflammatory compound found in rosemary plants (Salvia rosmarinus) named carnosic acid during the transition period of dairy cows. From day 1 to 3 after calving, 16 multiparous Holstein cows received a daily intravenous infusion of either 500 mL of saline (NaCl 0.9%; Saline; n = 8) or carnosic acid at a rate of 0.3 mg/kg of BW supplied in 500 mL of saline (CA; n = 8). Blood samples were taken at –7, 2, 5, 7, 14, and 21 d relative to parturition, then analyzed for metabolites related to energy metabolism, muscle mass catabolism, liver function, inflammation, and oxidative stress. CA infusion tended to improve milk performance; however, DMI was unaffected by treatment. At 2 d relative to parturition, CA cows had lower blood concentrations of haptoglobin, paraoxonase, FRAP, and NO2– than saline cows. After treatment infusions, haptoglobin remained lower in CA cows than saline at 5 d relative to parturition. Our results demonstrate that carnosic acid promoted positive responses on inflammation and oxidative stress biomarkers and may promote beneficial effects on lactation performance in peripartal dairy cows.


2019 ◽  
Vol 74 (10) ◽  
pp. 6133-2019
Author(s):  
YUANYUAN CHEN ◽  
ZHIHAO DONG ◽  
RUIRUI LI ◽  
CHUANG XU

Negative energy balance (NEB) is a common pathological cause of ketosis. As the major organs of lipid metabolism, the liver and fat tissue take part in regulating lipid oxidative capacity and energy demands, which is also a key metabolic pathway that regulates NEB development during the perinatal period. Fibroblast Growth Factor 21 (FGF21) is a novel metabolic regulator involved in the control of fatty acid oxidation and lipid metabolism during a prolonged negative energy balance. Our study determined a correlation between serum FGF21 and β-hydroxybutyric acid (BHBA) levels in dairy cows with ketosis. We used sixty cows with low milk yield, abnormal glucose metabolism, and ketosis. Serum FGF21 and BHBA levels were measured using commercial kits. Serum FGF21 increased with increasing BHBA levels up to 1.6 mmol/L. At BHBA levels > 1.6 mmol/L, FGF21 decreased. Serum FGF21 levels were positively associated with BHBA levels, particularly in dairy cows with subclinical ketosis (r = 0.647, P < 0.01). At BHBA levels between 1.2 mmol/L and 1.6 mmol/L, FGF21 was more closely correlated with BHBA than with other metabolic parameters. At BHBA levels > 1.6 mmol/L, the association between FGF21 and BHBA was not significant. In conclusion, our results show that FGF21 was closely related with SK in cows. FGF21 may be a promising regulator in the prevention of subclinical ketosis.


Sign in / Sign up

Export Citation Format

Share Document