scholarly journals Design of a Cascaded H-Bridge Multilevel Inverter Based on Power Electronics Building Blocks and Control for High Performance

2010 ◽  
Vol 10 (3) ◽  
pp. 262-269 ◽  
Author(s):  
Young-Min Park ◽  
Han-Seong Ryu ◽  
Hyun-Won Lee ◽  
Myung-Gil Jung ◽  
Se-Hyun Lee
Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 644
Author(s):  
Do-Yeong Kim ◽  
Boram Kim ◽  
Han-Seung Shin

The effect of cellulosic aerogel treatments used for adsorption of four polycyclic aromatic hydrocarbons (PAHs)—benzo[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene [BaP])—generated during the manufacture of sesame oil was evaluated. In this study, eulalia (Miscanthus sinensis var. purpurascens)-based cellulosic aerogel (adsorbent) was prepared and used high performance liquid chromatography with fluorescence detection for determination of PAHs in sesame oil. In addition, changes in the sesame oil quality parameters (acid value, peroxide value, color, and fatty acid composition) following cellulosic aerogel treatment were also evaluated. The four PAHs and their total levels decreased in sesame oil samples roasted under different conditions (p < 0.05) following treatment with cellulosic aerogel. In particular, highly carcinogenic BaP was not detected after treatment with cellulosic aerogel. Moreover, there were no noticeable quality changes in the quality parameters between treated and control samples. It was concluded that eulalia-based cellulosic aerogel proved suitable for the reduction of PAHs from sesame oil and can be used as an eco-friendly adsorbent.


2021 ◽  
Vol 170 ◽  
pp. 112529
Author(s):  
N. Cruz ◽  
A.J.N. Batista ◽  
J.M. Cardoso ◽  
B.B. Carvalho ◽  
P.F. Carvalho ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1399
Author(s):  
Karina Yévenes ◽  
Ekaterina Pokrant ◽  
Lina Trincado ◽  
Lisette Lapierre ◽  
Nicolás Galarce ◽  
...  

Tetracyclines, sulphonamides, and quinolones are families of antimicrobials (AMs) widely used in the poultry industry and can excrete up to 90% of AMs administrated, which accumulate in poultry litter. Worryingly, poultry litter is widely used as an agriculture fertilizer, contributing to the spread AMs residues in the environment. The aim of this research was to develop a method that could simultaneously identify and quantify three AMs families in poultry litter by high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Samples of AMs free poultry litter were used to validate the method according to 657/2002/EC and VICH GL49. Results indicate that limit of detection (LOD) ranged from 8.95 to 20.86 μg kg−1, while limits of quantitation (LOQ) values were between 26.85 and 62.58 µg kg−1 of tetracycline, 4-epi-tetracycline, oxytetracycline, 4-epi-oxytetracycline, enrofloxacin, ciprofloxacin, flumequine, sulfachloropyridazine, and sulfadiazine. Recoveries obtained ranged from 93 to 108%. The analysis of field samples obtained from seven commercial poultry flocks confirmed the adequacy of the method since it detected means concentrations ranging from 20 to 10,364 μg kg−1. This provides us an accurate and reliable tool to monitor AMs residues in poultry litter and control its use as agricultural fertilizer.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1382
Author(s):  
Xiaoying Deng ◽  
Huazhang Li ◽  
Mingcheng Zhu

Based on the idea of bisection method, a new structure of All-Digital Phased-Locked Loop (ADPLL) with fast-locking is proposed. The structure and locking method are different from the traditional ADPLLs. The Control Circuit consists of frequency compare module, mode-adjust module and control module, which is responsible for adjusting the frequency control word of digital-controlled-oscillator (DCO) by Bisection method according to the result of the frequency compare between reference clock and restructure clock. With a high frequency cascade structure, the DCO achieves wide tuning range and high resolution. The proposed ADPLL was designed in SMIC 180 nm CMOS process. The measured results show a lock range of 640-to-1920 MHz with a 40 MHz reference frequency. The ADPLL core occupies 0.04 mm2, and the power consumption is 29.48 mW, with a 1.8 V supply. The longest locking time is 23 reference cycles, 575 ns, at 1.92 GHz. When the ADPLL operates at 1.28 GHz–1.6 GHz, the locking time is the shortest, only 9 reference cycles, 225 ns. Compared with the recent high-performance ADPLLs, our design shows advantages of small area, short locking time, and wide tuning range.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Esteban Gonzalez-Valencia ◽  
Ignacio Del Villar ◽  
Pedro Torres

AbstractWith the goal of ultimate control over the light propagation, photonic crystals currently represent the primary building blocks for novel nanophotonic devices. Bloch surface waves (BSWs) in periodic dielectric multilayer structures with a surface defect is a well-known phenomenon, which implies new opportunities for controlling the light propagation and has many applications in the physical and biological science. However, most of the reported structures based on BSWs require depositing a large number of alternating layers or exploiting a large refractive index (RI) contrast between the materials constituting the multilayer structure, thereby increasing the complexity and costs of manufacturing. The combination of fiber–optic-based platforms with nanotechnology is opening the opportunity for the development of high-performance photonic devices that enhance the light-matter interaction in a strong way compared to other optical platforms. Here, we report a BSW-supporting platform that uses geometrically modified commercial optical fibers such as D-shaped optical fibers, where a few-layer structure is deposited on its flat surface using metal oxides with a moderate difference in RI. In this novel fiber optic platform, BSWs are excited through the evanescent field of the core-guided fundamental mode, which indicates that the structure proposed here can be used as a sensing probe, along with other intrinsic properties of fiber optic sensors, as lightness, multiplexing capacity and easiness of integration in an optical network. As a demonstration, fiber optic BSW excitation is shown to be suitable for measuring RI variations. The designed structure is easy to manufacture and could be adapted to a wide range of applications in the fields of telecommunications, environment, health, and material characterization.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 492
Author(s):  
Valentina Y. Guleva ◽  
Polina O. Andreeva ◽  
Danila A. Vaganov

Finding the building blocks of real-world networks contributes to the understanding of their formation process and related dynamical processes, which is related to prediction and control tasks. We explore different types of social networks, demonstrating high structural variability, and aim to extract and see their minimal building blocks, which are able to reproduce supergraph structural and dynamical properties, so as to be appropriate for diffusion prediction for the whole graph on the base of its small subgraph. For this purpose, we determine topological and functional formal criteria and explore sampling techniques. Using the method that provides the best correspondence to both criteria, we explore the building blocks of interest networks. The best sampling method allows one to extract subgraphs of optimal 30 nodes, which reproduce path lengths, clustering, and degree particularities of an initial graph. The extracted subgraphs are different for the considered interest networks, and provide interesting material for the global dynamics exploration on the mesoscale base.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1092 ◽  
Author(s):  
Sunddararaj ◽  
Rangarajan ◽  
Gopalan

The utilization of plug-in electric vehicles (PEV) has started to garner more attention worldwide considering the environmental and economic benefits. This has led to the invention of new technologies and motifs associated with batteries, bidirectional converters and inverters for Electric Vehicle applications. In this paper, a novel design and control of chopper circuit is proposed and configured with the series and parallel connection of the power electronic based switches for two-way operation of the converter. The bidirectional action of the proposed converter makes it suitable for plug-in electric vehicle applications as the grid is becoming smarter. The DC–DC converter is further interfaced with the designed multilevel inverter (MLI). The reduced switches associated with the novel design of MLI have overcome the cons associated with the conventional inverters in terms of enhanced performance in the proposed design. Further, novel control strategies have been proposed for the DC–DC converter based on Proportional Integral (PI) and Fuzzy based control logic. For the first time, the performance of the entire system is evaluated based on the comparison of proposed PI, fuzzy, and hybrid controllers. New rules have been formulated for the Fuzzy based controllers that are associated with the Converter design. This has further facilitated the interface of bidirectional DC–DC converter with the proposed MLI for an enhanced output voltage. The results indicate that the proposed hybrid controller provides better performance in terms of voltage gain, ripple, efficiency and overall aspects of power quality that forms the crux for PEV applications. The novelty of the design and control of the overall topology has been manifested based on simulation using MATLAB/SIMULINK.


2006 ◽  
Vol 55 (5) ◽  
pp. 1725-1733 ◽  
Author(s):  
P.G. Papageorgas ◽  
D. Maroulis ◽  
G. Anagnostopoulos ◽  
H. Albrecht ◽  
B. Wagner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document