scholarly journals THE ELECTROFILTER ASH OF GACKO THERMAL POWER PLANT AS TECHNOGENIC RAW MATERIAL AND THE IMPACT OF ASH WASTE PILEON THE ENVIRONMENT

2016 ◽  
Vol 1 (15) ◽  
Author(s):  
Ljiljana Crnogorac ◽  
Boško Vuković

During the working of thermal power plants, due to technological process of coal combustion, wastematter, which takes up large areas of land, degrades and pollutes the environment, is created. In the lastyears, a significant progress has been made in the world in researching new technologies thatimplement technogenic materials which have wide range of optimal economic use.An example for thisis electrofilterash which is, as technogenic raw material,largly and more often used in building industry.This resulted in decreasing negative effects of ash which was deposited considerably on ash waste piles.The use of ash for different industry purposes decreases the costs, increases a company's profitandremoves the negative effects on the environment and human health.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1267
Author(s):  
David Längauer ◽  
Vladimír Čablík ◽  
Slavomír Hredzák ◽  
Anton Zubrik ◽  
Marek Matik ◽  
...  

Large amounts of coal combustion products (as solid products of thermal power plants) with different chemical and physical properties cause serious environmental problems. Even though coal fly ash is a coal combustion product, it has a wide range of applications (e.g., in construction, metallurgy, chemical production, reclamation etc.). One of its potential uses is in zeolitization to obtain a higher added value of the product. The aim of this paper is to produce a material with sufficient textural properties used, for example, for environmental purposes (an adsorbent) and/or storage material. In practice, the coal fly ash (No. 1 and No. 2) from Czech power plants was firstly characterized in detail (X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX), particle size measurement, and textural analysis), and then it was hydrothermally treated to synthetize zeolites. Different concentrations of NaOH, LiCl, Al2O3, and aqueous glass; different temperature effects (90–120 °C); and different process lengths (6–48 h) were studied. Furthermore, most of the experiments were supplemented with a crystallization phase that was run for 16 h at 50 °C. After qualitative product analysis (SEM-EDX, XRD, and textural analytics), quantitative XRD evaluation with an internal standard was used for zeolitization process evaluation. Sodalite (SOD), phillipsite (PHI), chabazite (CHA), faujasite-Na (FAU-Na), and faujasite-Ca (FAU-Ca) were obtained as the zeolite phases. The content of these zeolite phases ranged from 2.09 to 43.79%. The best conditions for the zeolite phase formation were as follows: 4 M NaOH, 4 mL 10% LiCl, liquid/solid ratio of 30:1, silica/alumina ratio change from 2:1 to 1:1, temperature of 120 °C, process time of 24 h, and a crystallization phase for 16 h at 50 °C.


2021 ◽  
Vol 22 (1) ◽  
pp. 287-297
Author(s):  
Dilnoza Umurzakova

The purpose of this article is to develop high-quality combined automatic control systems (ACS) for the water level in the drum of steam boilers of thermal power plants (TPPs), which can significantly improve the quality of regulation and increase the efficiency of TPPs in a wide range of load changes. To improve the quality of water level control in the drum of steam generators of nuclear power plants with a pressurized water-cooled power reactor (PWPR), it is proposed to use a combined automatic control system based on a control loop with a correcting PI-controller tuned to a symmetrical optimum, with smoothing the reference signal and device compensation of the most dangerous internal and external measurable disturbances. A technique has been developed for assessing the impact of changes in the quality characteristics of transients of combined self-propelled guns by the water level in the drum of steam boilers and steam generators on the safety, reliability, durability, and efficiency of thermal power equipment of thermal power plants. Comparison was made of direct indicators of the quality of three ACS (typical and three-pulse, digital system with an observer state, and the proposed combined ACS). The simulation results of transients of the proposed and typical three-pulse self-propelled guns confirmed the advantages of the first. ABSTRAK: Artikel ini bertujuan bagi membina sistem kombinasi automatik (ACS) berkualiti tinggi bagi aras air dalam drum dandang stim tenaga terma logi kuasa (TPP). Ini dapat meningkatkan mutu peraturan dan meningkatkan kecekapan TPP secara signifikan dengan pelbagai perubahan beban. Bagi meningkatkan kualiti kawalan aras air dalam drum penjana wap loji kuasa tenaga nuklear dengan reaktor berpendingin air bertekanan (PWPR). Gabungan sistem kawalan automatik berdasarkan gelung kawalan dengan pembetulan PI telah dicadangkan dan diselaraskan simetri secara optimum, dengan melancarkan isyarat rujukan dan pembetulan peranti dari gangguan yang boleh diukur dari dalam dan luar. Satu teknik telah dibina bagi menilai kesan perubahan ciri kualiti transien gabungan berjentera pada aras air di tong dandang stim dan drum penjana wap pada keselamatan, kebolehpercayaan, ketahanan dan kecekapan peralatan tenaga terma loji janakuasa. Perbandingan dibuat pada kualiti tiga ACS (sistem digital khas dan tiga signal dengan keadaan pemerhati dan gabungan ACS yang dicadangkan). Hasil sistem simulasi transien yang dicadangkan dan tiga signal biasa berjentera mengesahkan kelebihan pada yang pertama.


2017 ◽  
Vol 28 (4) ◽  
pp. 16-26
Author(s):  
Anna Pasieczna ◽  
Izabela Bojakowska ◽  
Weronika Nadłonek

AbstractIn our study, a detailed survey was conducted with the aim to determine the distribution and possible anthropogenic sources of molybdenum in river and stream sediments in the central Upper Silesian Industrial Region (Southern Poland), where for many years, iron and zinc smelters as well as coking and thermal power plants were operating. At the same time, this has also been a residential area with the highest population density in the country. Sediments (1397 samples in total) were collected from rivers and streams, and analysed for the content of molybdenum and 22 other elements. ICP-AES and CV-AAS methods were applied for the determination of the content of elements. The studies revealed molybdenum content in the range of < 0.5–204.8 mg·kg−1 with the average content 1.9 mg·kg−1. About half of the samples contained < 0.5 mg·kg−1 of molybdenum, and only 4.6% of the samples showed values > 5 mg·kg−1. The spatial distribution of molybdenum demonstrated by the geochemical map has indicated that the principal factor determining its content in sediments is the discharge of wastewater from steelworks and their slag heaps. Another source of this element in sediments has been the waste of the historical mining of zinc ore and metallurgy of this metal. Additionally, molybdenum migration from landfills of power plants, coal combustion and Mo emission to the atmosphere and dust fall-out have been significant inputs of Mo pollution to the sediments.


OSEANA ◽  
2019 ◽  
Vol 44 (1) ◽  
pp. 26-37
Author(s):  
Dewi Surinati ◽  
Muhammad Ramadhani Marfatah

HYDRODYNAMICS EFFECT TO THE DISTRIBUTION OF THERMAL WASTE IN THE OCEAN. The ocean is a thermal waste disposal site derived from thermal power plants. The ecosystems and marine biota could be disrupted even massive damaged if this waste was disposed into the ocean without proper processing. All activities in the ocean need a well understanding of hydrodynamics to avoid or minimize any negative effects that may occur. It needs dispersion modeling of heat water prior to the construction of the power plant in order to reduce the impact of environmental damage.


2020 ◽  
Vol 11 (2) ◽  
pp. 172-181
Author(s):  
I. Yu. Zolotova

To assess the probability and potential scale of risks associated with sustaining the current model of coal combustion product (CCP) utilization on Russian thermal power plants.This study adopts a qualitative approach. A panel comprising twenty experts was formed. Experts cores were derived using the Saaty paired comparison matrix.The results of the study indicate that environmental, social and technological risks are among the most significant. The largest scale of effects can be expected from the potential increase in the negative effects from coal ash landfill to ground waters and the distribution of small-sized ash-slag particles as a source of air pollution.Previous studies in Russia have largely dealt with technical aspects of CCP recycling or their potential application areas. However, the issues of the potential aftermath of low CCP utilization volume in Russia have not been properly assessed in prior research.


2021 ◽  
Vol 323 ◽  
pp. 8-13
Author(s):  
Jadambaa Temuujin ◽  
Damdinsuren Munkhtuvshin ◽  
Claus H. Ruescher

With a geological reserve of over 170 billion tons, coal is the most abundant energy source in Mongolia with six operating thermal power stations. Moreover, in Ulaanbaatar city over 210000 families live in the Ger district and use over 800000 tons of coal as a fuel. The three thermal power plants in Ulaanbaatar burn about 5 million tons of coal, resulting in more than 500000 tons of coal combustion by-products per year. Globally, the ashes produced by thermal power plants, boilers, and single ovens pose serious environmental problems. The utilization of various types of waste is one of the factors determining the sustainability of cities. Therefore, the processing of wastes for re-use or disposal is a critical topic in waste management and materials research. According to research, the Mongolian capital city's air and soil quality has reached a disastrous level. The main reasons for air pollution in Ulaanbaatar are reported as being coal-fired stoves of the Ger residential district, thermal power stations, small and medium-sized low-pressure furnaces, and motor vehicles. Previously, coal ashes have been used to prepare advanced materials such as glass-ceramics with the hardness of 6.35 GPa, geopolymer concrete with compressive strength of over 30 MPa and zeolite A with a Cr (III) removal capacity of 35.8 mg/g. Here we discuss our latest results on the utilization of fly ash for preparation of a cement stabilized base layer for paved roads, mechanically activated fly ash for use in concrete production, and coal ash from the Ger district for preparation of an adsorbent. An addition of 20% fly ash to 5-8% cement made from a mixture of road base gave a compressive strength of ~ 4MPa, which exceeds the standard. Using coal ashes from Ger district prepared a new type of adsorbent material capable of removing various organic pollutants from tannery water was developed. This ash also showed weak leaching characteristics in water and acidic environment, which opens up an excellent opportunity to utilize.


2021 ◽  
Vol 8 (65) ◽  
pp. 15164-15172
Author(s):  
S. Pratap ◽  
Aziz Fatima

In present scenario of COVID-19, the effect of pandemic on Digital Marketing is visible not only in urban areas but also in rural areas. Customers are searching for various products and services through Google by which they can purchase wide range of products and services to fill their needs and desires at relatively low price. The freedom to select numerous products is available by browsing various websites. Hence this study focuses on Impact of digital marketing particularly in the selected rural areas of Telangana state. This state been formed recently but in the IT sector it is receiving much attention throughout the globe, as many MNC’s are establishing their operations in this state. Therefore, an attempt has been made in this study to find out how the Impact of digital marketing is trickling down in the rural and remote areas of newly formed Telangana state. Hence this study focuses the impact of digital marketing in the selected areas of Telangana state.


2020 ◽  
Vol 15 (3) ◽  
Author(s):  
Arvind R S ◽  
Prasanna Ram M ◽  
Prashanth T ◽  
Jaimon Dennis Quadros

Cenosphere fly ash is one of the most inexpensive and low-density material which is abundantly available as a solid waste by-product of coal combustion in thermal power plants. Aluminium metal matrix composites with Nickel coated cenospheres as the reinforcement is prepared by stir casting route. The composites are prepared with varying percentages of cenospheres in the percentage of 2-10% by weight of the composite. Immersion corrosion tests are conducted on the composites in three different medium and for three different time durations. It is evident from the test results as well as the microstructure images that the weight loss of samples with 8% Nickel coated cenospheres has shown least corrosion or the highest corrosion resistance when compared to the counterparts.


Noise can be defined as an undesirable sound that pollutes the environment. If noise is continuous and exceeds certain levels, negative effects on health can be observed. In recent years, the impact of environmental noise (road traffic noise, railway traffic noise, air traffic noise and industrial noise) on human health has come under increasingly intense scrutiny. Noise can cause a number of negative effects on health that directly or indirectly affect humans. The occurrence of some certain and harmful health effects drives the onset of others and may contribute to the development of various diseases. Health is not only a state of physical well-being, but also mental well-being. Mental health primarily depends on the quality of life, which can be affected by various environmental factors, such as noise. An important aspect of fighting noise is the most effective protection of the population by avoiding sources of noise and reducing it. This can be achieved by introducing new technical solutions and new technologies, including devices that generate less noise. Another important measure is educating the society and influencing the change of individual and collective behavior, which may contribute to reducing the harmful factor, which is noise in human life, and minimize the resulting negative effects on health.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (3) ◽  
pp. 208-214
Author(s):  
Michał Pajda ◽  
◽  
Wojciech Mazela ◽  

The aim of the work was to present the issue of eco-efficiency, based on the PN-EN ISO 14045:2012 standard in relation to the production of fatty acid methyl esters (FAME). The ecoefficiency analysis takes into account economic and environmental aspects in the improvement of products and processes / technologies. Eco-efficiency considers the product and technology throughout the life cycle, from the construction phase, through use to decommissioning. The impact on the natural environment is assessed on the basis of: consumption of energy, materials, dust and gas emissions, waste and sewage. Total costs include: production costs, raw material costs, costs during the use phase including maintenance, repair and operating costs, product disposal or recycling. The eco-efficiency analysis is helpful in making decisions regarding the selection of a new product or designing a new technology, and enables the selection of the variant that is the most economical and has the least possible impact on the natural environment. These issues are particularly important in the case of biofuels. The rapid growth of their production and the European Union’s policy, which aims to increase the share of energy from renewable sources, cause concerns of many experts regarding the threats related to the production of biofuels, both for the environment and food security. In particular, efforts are made to minimize the amount of waste and residues by implementing the idea of a circular economy. This approach promotes the development of new technologies that are more environmentally friendly. Due to the regulations set out in the RED and RED II Directives, there is a chance that the biofuels will have a less negative impact on the environment. This results from the obligation to certify compliance with the sustainability criteria, which is carried out by voluntary systems recognized by the European Commission, such as the KZR INiG System.


Sign in / Sign up

Export Citation Format

Share Document