scholarly journals Impact Assessment of the Wastewater Treatment Plants’ Discharges on Maritsa River

2021 ◽  
Vol 25 (2) ◽  
pp. 169-182
Author(s):  
Tony Venelinov ◽  
◽  
Galina Yotova ◽  
Veronika Mihaylova ◽  
Svetlana Lazarova ◽  
...  

Data analysis of wastewater samples at the outlets of wastewater treatment plants (WWTPs) of Pazardzhik, Plovdiv and Svilengrad, which discharge into the Maritsa River is presented. Total monthly loads for 2017 at the outlets are calculated using the monthly averages for the concentrations of chemical oxygen demand, biochemical oxygen demand, total phosphorus and total nitrogen (TN) and the monthly averages for the flow rates. The contributions of the WWTPs to the total river loads emphasize that the impact of WWTPs of Pazardzhik and Plovdiv is significantly greater than WWTP of Svilengrad. Additionally, river water samples were collected before and after the discharge points of the WWTPs in August 2018 and analyzed for water quality parameters listed in Directive 75/440/EEC. Comparison between the river concentrations before the outlet of WWPT - Pazardzhik and after the last sampling point (the outlet of WWTP - Svilengrad) indicates an increase for all the studied parameters, except for Al and Cu. Based on the results obtained for TN, the category of the surface water is significantly deteriorated after discharge of the WWTP - Plovdiv. Wastewater effect on the river surface water is also estimated by using a battery of ecotoxicological tests. The results are presented and compared by the classical approach using categorization based on water quality indicators.

2013 ◽  
Vol 12 (1) ◽  
pp. 196-209 ◽  
Author(s):  
H. S. Lim ◽  
L. Y. Lee ◽  
S. E. Bramono

This paper examines the impact of community-based water treatment systems on water quality in a peri-urban village in Yogyakarta, Indonesia. Water samples were taken from the wastewater treatment plants (WWTPs), irrigation canals, paddy fields and wells during the dry and wet seasons. The samples were tested for biological and chemical oxygen demand, nutrients (ammonia, nitrate, total nitrogen and total phosphorus) and Escherichia coli. Water quality in this village is affected by the presence of active septic tanks, WWTP effluent discharge, small-scale tempe industries and external sources. We found that the WWTPs remove oxygen-demanding wastes effectively but discharged nutrients, such as nitrate and ammonia, into irrigation canals. Irrigation canals had high levels of E. coli as well as oxygen-demanding wastes. Well samples had high E. coli, nitrate and total nitrogen levels. Rainfall tended to increase concentrations of biological and chemical oxygen demand and some nutrients. All our samples fell within the drinking water standards for nitrate but failed the international and Indonesian standards for E. coli. Water quality in this village can be improved by improving the WWTP treatment of nutrients, encouraging more villagers to be connected to WWTPs and controlling hotspot contamination areas in the village.


2021 ◽  
Author(s):  
M. M. Majedul Islam ◽  
Md. Atikul Islam

Abstract Faecal contamination of surface water sources is an important water quality issue worldwide. Although quite a few studies exist on surface water faecal contamination and variability of indicator bacteria, most of the studies have been based on larger river basins and in temperate region. The variability is relatively unknown in local scale and in tropical developing countries. In this study we assess how anthropogenic and environmental factors affect faecal contamination and physicochemical parameters in Rupsha and Bhairab rivers around Khulna city, Bangladesh. Water samples were collected from six locations of the rivers during a wet and dry period in 2018 to measure Escherichia coli (E. coli) concentrations. Water physicochemical parameters—temperature, turbidity, pH, dissolved oxygen, biochemical oxygen demand and chemical oxygen demand were also measured. Higher concentrations of E. coli were found in the sampling sites located near the densely populated urban area compared to the downstream site, which receives fewer amounts of discharges from sewer drains. All the E. coli samples violated bathing water quality standards. E. coli concentrations were found to be correlated positively with precipitation and turbidity. A linear regression model was applied, that explains large part of the variation in E. coli concentration (R2 = 0.42). Water quality index assessment was also ranked the water quality as ‘poor’ category; indicate that the water is unsuitable for uses in domestic and recreational purposes and high health risks involved with the water use. The study findings highlight the problem of untreated sewage discharge into the rivers. Implementation of sewage treatment plant with adequate capacity is highly recommended.


Author(s):  
Assouman Amadou ◽  
Kpan Oulai Jean- Gautier ◽  
Gnamba Franck Maxime ◽  
Oga Yéï Marie Solange ◽  
Biémi Jean

Aboisso region is experiencing unprecedented agricultural activities. Cultural techniques such as the use of insecticides are harming the quality of water. This study aims to assess the impact of insecticides on the water quality in the Aboisso region. Thirty-one (31) water points (10 surface water and 21 groundwater) were sampled. The determination of physicochemical parameters as well as the multi-residue method used for insecticides analysis in the samples allowed us to achieve our objective. The result of the physicochemical analysis shows that the temperature of groundwater (27.91°C) is higher than surface water temperature (26.77°C). These waters are mostly acidic with a slightly lower pH for groundwater (6.46) compared to surface water (6.54). The conductivity is higher in groundwater (average of 130.46 µS/cm) as opposed to surface water (average of 43.50 µS/cm). After applying the multi-residue method, the results reveal the presence of nine (9) active ingredients. In surface waters, all these molecules, except Lambda-cyhalothrin and Deltamethrin, exceed the WHO guide values (0.1 µg/L). The highest concentrations recorded concern ethyl parathion and profenofos (8.24 µg/L and 8.04 µg/L respectively). In groundwater, it is rather Parathion-methyl, Profenofos, Dimethoate, Chlorpyriphos-ethyl, Lambda-cyhalothrin and Deltamethrin that are often at below WHO standards. However, the present study reveals that all of the water samples analysed were polluted, owing to anthropogenic used of insecticides in the region, and other chemicals with high concentrations of parathion-ethyl: 8.24 µg/L and profenofos: 8.04 µg/L. These waters are therefore unfit for human consumption.


2016 ◽  
Vol 7 (1) ◽  
pp. 97-102 ◽  
Author(s):  
Am Jang ◽  
Jong-Tae Jung ◽  
Hayoung Kang ◽  
Hyung-Soo Kim ◽  
Jong-Oh Kim

We evaluate the applicability of a reverse osmosis (RO) system that combines powdered activated carbon (PAC) and ultrafiltration (UF) to treat the effluent discharged from tannery wastewater treatment plants. Conventional treatment processes such as neutralization, clariflocculation, and biological processes are used to clean the effluent before feeding to the PAC and UF combined RO system. The efficiency of the combined system was evaluated using the chemical oxygen demand Mn (CODMn), color, pH, turbidity, total nitrogen, total phosphate, and conductivity. The PAC was effective in greatly reducing the CODMn and color. The turbidity and silt density index of the UF permeate satisfied the water quality indices required for the RO feed. The RO system was constantly maintained at approximately 75% RO recovery, and the RO permeate satisfied the water quality requirements for reusing the processed water. Therefore, the PAC-UF combined RO system can be used to process effluent discharged from tannery wastewater treatment plants for reuse.


2006 ◽  
Vol 6 (5) ◽  
pp. 59-67 ◽  
Author(s):  
S. Shrestha ◽  
F. Kazama

Different multivariate statistical techniques were used to evaluate temporal and spatial variations of surface water-quality of Fuji river basin using data sets of 8 years monitoring at 13 different sites. The hierarchical cluster analysis grouped thirteen sampling sites into three clusters i.e. relatively less polluted (LP), medium polluted (MP) and highly polluted (HP) sites based on the similarity of water quality characteristics. The principal component analysis/factor analysis indicated that the parameters responsible for water quality variations are mainly related to discharge and temperature (natural), organic pollution (point sources) in LP areas; organic pollution (point sources) and nutrients (non point sources) in MP areas; and organic pollution and nutrients (point sources) in HP areas. The discriminant analysis showed that six water quality parameters (discharge, temperature, dissolved oxygen, biochemical oxygen demand, electrical conductivity and nitrate nitrogen) account for most of the expected temporal variations whereas seven water quality parameters (discharge, temperature, biochemical oxygen demand, pH, electrical conductivity, nitrate nitrogen and ammonical nitrogen) account for most of the expected spatial variations in surface water quality of Fuji river basin.


2009 ◽  
Vol 59 (11) ◽  
pp. 2167-2178
Author(s):  
Seo Jin Ki ◽  
Joo-Hyon Kang ◽  
Young Geun Lee ◽  
Yun Seok Lee ◽  
Suthipong Sthiannopkao ◽  
...  

Comprehensive water quality monitoring was conducted to assess the water quality conditions and to determine the impact of urban infrastructure on ambient water quality in Angkor, Cambodia. During this study, surface water, groundwater, and sediment samples were collected for two distinctive seasons in 2006–2007 at 58 monitoring sites along and near the Siem Reap River, in Tole Sap Lake (TSL), and West Baray, the primary water resources in this region. To assess the seasonal and spatial variability of 27 water quality parameters, multivariate analysis of variance, hierarchical cluster analysis, and the Kruskal-Wallis test were conducted using the obtained data. Differences and relationships between the surface water and groundwater were also investigated using t-test and correlation analysis, respectively. The results of these tests showed that the bacterial indicators need special attention as the urban infrastructure of the downtown area caused increased levels of these bacterial indicators in both surface water and groundwater. However, for most parameters, though surface water showed strong seasonal variations, groundwater presented relatively stable conditions between seasons (p>0.05) with site-specific geochemical conditions. Sediment quality illustrated that pollution levels of 10 trace metals were the highest in TSL because of its unique characteristic (river with backward flow), but did not reflect any potential enrichment from urban development. Overall, the results reveal that while the urban infrastructure in this region has not significantly affected most of the water quality parameters, bacteria and coliphages are still a main concern due to their contributions in widespread waterborne diseases. Thus, careful mitigation plans for reducing each pollutant source are needed in the Angkor area.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 336
Author(s):  
Nguyen Thanh Giao ◽  
Phan Kim Anh ◽  
Huynh Thi Hong Nhien

The study was conducted to spatiotemporally analyze the quality, location and critical water variables influencing water quality using water monitoring data from the Department of Environment and Natural Resources, Dong Thap province in 2019. The water quality parameters including turbidity, pH, temperature, dissolved oxygen (DO), total suspended solids (TSS), biological oxygen demand (BOD), chemical oxygen demand (COD), nitrite (N-NO2−), nitrate (N-NO3−), ammonium (N-NH4+), total nitrogen (TN), orthophosphate (P-PO43−), chloride (Cl−), oil and grease, sulfate (SO42−), coliforms, and Escherichia coli (E. coli) were collected at 58 locations with the frequency of four times per year (February, May, August, and November). These parameters were compared with national technical regulation on surface water quality—QCVN 08-MT: 2015/BTNMT. Water quality index (WQI) was calculated and spatially presented by geographical information system (GIS) tool. Pearson correlation analysis, cluster analysis (CA), and principal component analysis (PCA) were used to evaluate the correlation among water quality parameters, group and reduce the sampling sites, and identify key parameters and potential water pollution sources. The results showed that TSS, BOD, COD, N-NH4+, P-PO43−, coliforms, and E. coli were the significant concerns impairing the water quality. Water quality was assessed from poor to medium levels by WQI analysis. CA suggested that the current monitoring locations could be reduced from 58 sites to 43 sites which can be saved the total monitoring budget up to 25.85%. PCA showed that temperature, pH, TSS, DO, BOD, COD, N-NH4+, N-NO2−, TN, P-PO43−, coliforms, and E. coli were the key water parameters influencing water quality in Dong Thap province’s canals and rivers; thus, these parameters should be monitored annually. The water pollution sources were possibly hydrological conditions, water runoff, riverbank erosion, domestic and urban activities, and industrial and agricultural discharges. Significantly, the municipal and agricultural wastes could be decisive factors to the change of surface water quality in the study area. Further studies need to focus on identifying sources of water pollution for implementing appropriate water management strategies.


Geografie ◽  
2018 ◽  
Vol 123 (4) ◽  
pp. 479-505
Author(s):  
Luboš Mrkva ◽  
Bohumír Janský

Despite major investments into the remediation of wastewater, and the reduction of fertilizers, the quality of small river surface water in agricultural and rural regions of Czechia is still very low. The Mastník stream flows through an agricultural area before combining with the Vltava river; a portion of the Mastník stream water inevitably terminates in the Slapy Reservoir. The quality of the water has been analyzed using data from indicator concentrations from both the Vltava River Basin Authority study profiles, and the author’s monitoring profile. The data show that the steps that have been taken – primarily the construction of wastewater treatment plants – have led to a gradual improvement in the surface water quality by some parameters. Presently, a growing concentration of chlorophyll–α and a lack of dissolved oxygen are influencing the final quality of the water. In the case of the Mastník stream, it is particularly necessary to improve the remediation of wastewater from small households, and to reduce the impact of water erosion on agricultural soil.


2021 ◽  
Vol 83 (3) ◽  
pp. 29-36
Author(s):  
Thanh Giao Nguyen ◽  
Vo Quang Minh

The study aimed to evaluate the surface water quality of the Tien River and identify water quality parameters to be monitored using the water quality monitoring data in the period of 2011 - 2019. The water samples were collected at five locations from Tan Chau to Cho Moi districts, An Giang province for three times per year (i.e., in March, June, and September). Water quality parameters included temperature (oC), pH, dissolved oxygen (DO), total suspended solids (TSS), nitrate (NO3--N), orthophosphate (PO43--P), biological oxygen demand (BOD), and coliforms. These parameter results were compared with the national technical regulation on surface water quality QCVN 08-MT: 2015/BTNMT, column A1. Principal component analysis (PCA) was used to identify the sources of pollution and the main factors affecting water quality. The results of this study showed that DO concentration was lower and TSS, BOD, PO43--P, coliforms concentrations in the Tien river exceeded QCVN 08-MT: 2015/BTNMT, column A1. pH, temperature, and NO3--N values were in accordance with the permitted regulation. The water monitoring parameters were seasonally fluctuated. DO, BOD, TSS, and coliforms concentrations were higher in the rainy season whereas NO3--N and PO43--P were higher in the dry season. The PCA results illustrated that pH, TSS, DO, BOD, PO43--P and coliforms should be included in the monitoring program. Other indicators such as temperature and NO3--N could be considered excluded from the program to save costs. 


Sign in / Sign up

Export Citation Format

Share Document