scholarly journals Demographic reconstruction from ancient DNA supports rapid extinction of the great auk

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Jessica E Thomas ◽  
Gary R Carvalho ◽  
James Haile ◽  
Nicolas J Rawlence ◽  
Michael D Martin ◽  
...  

The great auk was once abundant and distributed across the North Atlantic. It is now extinct, having been heavily exploited for its eggs, meat, and feathers. We investigated the impact of human hunting on its demise by integrating genetic data, GPS-based ocean current data, and analyses of population viability. We sequenced complete mitochondrial genomes of 41 individuals from across the species’ geographic range and reconstructed population structure and population dynamics throughout the Holocene. Taken together, our data do not provide any evidence that great auks were at risk of extinction prior to the onset of intensive human hunting in the early 16th century. In addition, our population viability analyses reveal that even if the great auk had not been under threat by environmental change, human hunting alone could have been sufficient to cause its extinction. Our results emphasise the vulnerability of even abundant and widespread species to intense and localised exploitation.

Author(s):  
Robert H. Ellison

Prompted by the convulsions of the late eighteenth century and inspired by the expansion of evangelicalism across the North Atlantic world, Protestant Dissenters from the 1790s eagerly subscribed to a millennial vision of a world transformed through missionary activism and religious revival. Voluntary societies proliferated in the early nineteenth century to spread the gospel and transform society at home and overseas. In doing so, they engaged many thousands of converts who felt the call to share their experience of personal conversion with others. Though social respectability and business methods became a notable feature of Victorian Nonconformity, the religious populism of the earlier period did not disappear and religious revival remained a key component of Dissenting experience. The impact of this revitalization was mixed. On the one hand, growth was not sustained in the long term and, to some extent, involvement in interdenominational activity undermined denominational identity; on the other hand, Nonconformists gained a social and political prominence they had not enjoyed since the middle of the seventeenth century and their efforts laid the basis for the twentieth-century explosion of evangelicalism in Africa, Asia, and South America.


2016 ◽  
Vol 29 (3) ◽  
pp. 941-962 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng

Abstract The impact of the North Atlantic Oscillation (NAO) on the Atlantic meridional overturning circulation (AMOC) and large-scale climate is assessed using simulations with three different climate models. Perturbation experiments are conducted in which a pattern of anomalous heat flux corresponding to the NAO is added to the model ocean. Differences between the perturbation experiments and a control illustrate how the model ocean and climate system respond to the NAO. A positive phase of the NAO strengthens the AMOC by extracting heat from the subpolar gyre, thereby increasing deep-water formation, horizontal density gradients, and the AMOC. The flux forcings have the spatial structure of the observed NAO, but the amplitude of the forcing varies in time with distinct periods varying from 2 to 100 yr. The response of the AMOC to NAO variations is small at short time scales but increases up to the dominant time scale of internal AMOC variability (20–30 yr for the models used). The amplitude of the AMOC response, as well as associated oceanic heat transport, is approximately constant as the time scale of the forcing is increased further. In contrast, the response of other properties, such as hemispheric temperature or Arctic sea ice, continues to increase as the time scale of the forcing becomes progressively longer. The larger response is associated with the time integral of the anomalous oceanic heat transport at longer time scales, combined with an increased impact of radiative feedback processes. It is shown that NAO fluctuations, similar in amplitude to those observed over the last century, can modulate hemispheric temperature by several tenths of a degree.


2020 ◽  
Vol 73 (1) ◽  
pp. 103-111
Author(s):  
D. Kalibekuly ◽  
◽  
Y.S. Chukubayev ◽  

The paper examines the dynamics of regional security in Norway as a part of Northern Europe. Being a political and geographical part of the Euro-Atlantic security system. Northern Europe, in its turn, is experiencing the impact of the confrontation between Russia and NATO. Norway's security policy analyzed from the perspective of a regional leader, as a NATO member country participating in the operations of the North Atlantic Alliance and as NATO's northern wing.


2018 ◽  
Vol 14 (8) ◽  
pp. 1253-1273 ◽  
Author(s):  
Kees Nooren ◽  
Wim Z. Hoek ◽  
Brian J. Dermody ◽  
Didier Galop ◽  
Sarah Metcalfe ◽  
...  

Abstract. The impact of climate change on the development and disintegration of Maya civilisation has long been debated. The lack of agreement among existing palaeoclimatic records from the region has prevented a detailed understanding of regional-scale climatic variability, its climatic forcing mechanisms and its impact on the ancient Maya. We present two new palaeo-precipitation records for the central Maya lowlands, spanning the Pre-Classic period (1800 BCE–250 CE), a key epoch in the development of Maya civilisation. A beach ridge elevation record from world's largest late Holocene beach ridge plain provides a regional picture, while Lake Tuspan's diatom record is indicative of precipitation changes at a local scale. We identify centennial-scale variability in palaeo-precipitation that significantly correlates with the North Atlantic δ14C atmospheric record, with a comparable periodicity of approximately 500 years, indicating an important role of North Atlantic atmospheric–oceanic forcing on precipitation in the central Maya lowlands. Our results show that the Early Pre-Classic period was characterised by relatively dry conditions, shifting to wetter conditions during the Middle Pre-Classic period, around the well-known 850 BCE (2.8 ka) event. We propose that this wet period may have been unfavourable for agricultural intensification in the central Maya lowlands, explaining the relatively delayed development of Maya civilisation in this area. A return to relatively drier conditions during the Late Pre-Classic period coincides with rapid agricultural intensification in the region and the establishment of major cities.


Geology ◽  
2020 ◽  
Author(s):  
Armand Hernández ◽  
Mário Cachão ◽  
Pedro Sousa ◽  
Ricardo M. Trigo ◽  
Jürg Luterbacher ◽  
...  

Nearshore upwelling along the eastern North Atlantic margin regulates regional marine ecosystem productivity and thus impacts blue economies. While most global circulation models show an increase in the intensity and duration of seasonal upwelling at high latitudes under future human-induced warmer conditions, projections for the North Atlantic are still ambiguous. Due to the low temporal resolution of coastal upwelling records, little is known about the impact of natural forcing mechanisms on upwelling variability. Here, we present a microfossil-based proxy record and modeling simulations for the warmest period of the Holocene (ca. 9–5 ka) to estimate the contribution of the natural variability in North Atlantic upwelling via atmospheric and oceanic dynamics. We found that more frequent high-pressure conditions in the eastern North Atlantic associated with solar activity and orbital parameters triggered upwelling variations at multidecadal and millennial time scales, respectively. Our new findings offer insights into the role of external forcing mechanisms in upwelling changes before the Anthropocene, which must be considered when producing future projections of midlatitude upwelling activity.


2013 ◽  
Vol 9 (2) ◽  
pp. 935-953 ◽  
Author(s):  
M. Kageyama ◽  
U. Merkel ◽  
B. Otto-Bliesner ◽  
M. Prange ◽  
A. Abe-Ouchi ◽  
...  

Abstract. Fresh water hosing simulations, in which a fresh water flux is imposed in the North Atlantic to force fluctuations of the Atlantic Meridional Overturning Circulation, have been routinely performed, first to study the climatic signature of different states of this circulation, then, under present or future conditions, to investigate the potential impact of a partial melting of the Greenland ice sheet. The most compelling examples of climatic changes potentially related to AMOC abrupt variations, however, are found in high resolution palaeo-records from around the globe for the last glacial period. To study those more specifically, more and more fresh water hosing experiments have been performed under glacial conditions in the recent years. Here we compare an ensemble constituted by 11 such simulations run with 6 different climate models. All simulations follow a slightly different design, but are sufficiently close in their design to be compared. They all study the impact of a fresh water hosing imposed in the extra-tropical North Atlantic. Common features in the model responses to hosing are the cooling over the North Atlantic, extending along the sub-tropical gyre in the tropical North Atlantic, the southward shift of the Atlantic ITCZ and the weakening of the African and Indian monsoons. On the other hand, the expression of the bipolar see-saw, i.e., warming in the Southern Hemisphere, differs from model to model, with some restricting it to the South Atlantic and specific regions of the southern ocean while others simulate a widespread southern ocean warming. The relationships between the features common to most models, i.e., climate changes over the north and tropical Atlantic, African and Asian monsoon regions, are further quantified. These suggest a tight correlation between the temperature and precipitation changes over the extra-tropical North Atlantic, but different pathways for the teleconnections between the AMOC/North Atlantic region and the African and Indian monsoon regions.


2014 ◽  
Vol 27 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Wilbert Weijer ◽  
Erik van Sebille

Abstract The impact of Agulhas leakage variability on the strength of the Atlantic meridional overturning circulation (AMOC) in the Community Climate System Model, version 4 (CCSM4) is investigated. In this model an advective connection exists that transports salinity anomalies from the Agulhas region into the North Atlantic on decadal (30–40 yr) time scales. However, there is no identifiable impact of Agulhas leakage on the strength of the AMOC, suggesting that the salinity variations are too weak to significantly modify the stratification in the North Atlantic. It is argued that this study is inconclusive with respect to an impact of Agulhas leakage on the AMOC. Salinity biases leave the South Atlantic and Indian Oceans too homogeneous, in particular erasing the observed salinity front in the Agulhas retroflection region. Consequently, salinity variability in the southeastern South Atlantic is found to be much weaker than observed.


2018 ◽  
Vol 31 (6) ◽  
pp. 2533-2545 ◽  
Author(s):  
D. Whittleston ◽  
K. A. McColl ◽  
D. Entekhabi

The impact of future greenhouse gas forcing on the North Atlantic and North Pacific tropospheric jets remains uncertain. Opposing changes in the latitudinal temperature gradient—forced by amplified lower-atmospheric Arctic warming versus upper-atmospheric tropical warming—make robust predictions a challenge. Despite some models simulating more realistic jets than others, it remains the prevailing approach to treat each model as equally probable (i.e., democratic weighting). This study compares democratically weighted projections to an alternative Bayesian-weighting method based on the ability of models to simulate historical wintertime jet climatology. The novel Bayesian technique is developed to be broadly applicable to high-dimensional fields. Results show the Bayesian weighting can reduce systematic bias and suggest the wintertime jet response to greenhouse gas forcing is largely independent of this historical bias (i.e., not state dependent). A future strengthening and narrowing is seen in both winter jets, particularly at the upper levels. The widely reported poleward shift at the level of the eddy-driven jet does not appear statistically robust, particularly over the North Atlantic, indicating sensitivity to current model deficiencies.


Sign in / Sign up

Export Citation Format

Share Document