scholarly journals β3-Adrenoceptor redistribution impairs NO/cGMP/PDE2 signalling in failing cardiomyocytes

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Sophie Schobesberger ◽  
Peter T Wright ◽  
Claire Poulet ◽  
Jose L Sanchez Alonso Mardones ◽  
Catherine Mansfield ◽  
...  

Cardiomyocyte β3-adrenoceptors (β3-ARs) coupled to soluble guanylyl cyclase (sGC)-dependent production of the second messenger 3’,5’-cyclic guanosine monophosphate (cGMP) have been shown to protect from heart failure. However, the exact localization of these receptors to fine membrane structures and subcellular compartmentation of β3-AR/cGMP signals underpinning this protection in health and disease remain elusive. Here, we used a Förster Resonance Energy Transfer (FRET)-based cGMP biosensor combined with scanning ion conductance microscopy (SICM) to show that functional β3-ARs are mostly confined to the T-tubules of healthy rat cardiomyocytes. Heart failure, induced via myocardial infarction, causes a decrease of the cGMP levels generated by these receptors and a change of subcellular cGMP compartmentation. Furthermore, attenuated cGMP signals led to impaired phosphodiesterase two dependent negative cGMP-to-cAMP cross-talk. In conclusion, topographic and functional reorganization of the β3-AR/cGMP signalosome happens in heart failure and should be considered when designing new therapies acting via this receptor.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kari Kopra ◽  
Iraida Sharina ◽  
Emil Martin ◽  
Harri Härmä

Abstract Cardiovascular diseases are the number one death worldwide. Nitric oxide (NO)—NO-sensitive (soluble) guanylyl cyclase (sGC)—cyclic guanosine monophosphate (cGMP) pathway regulates diverse set of important physiological functions, including maintenance of cardiovascular homeostasis. Resting and activated sGC enzyme converts guanosine triphosphate to an important second messenger cGMP. In addition to traditional NO generators, a number of sGC activators and stimulators are currently in clinical trials aiming to support or increase sGC activity in various pathological conditions. cGMP-specific phosphodiesterases (PDEs), which degrade cGMP to guanosine monophosphate, play key role in controlling the cGMP level and the strength or length of the cGMP-dependent cellular signaling. Thus, PDE inhibitors also have clear clinical applications. Here, we introduce a homogeneous quenching resonance energy transfer (QRET) for cGMP to monitor both sGC and PDE activities using high throughput screening adoptable method. We demonstrate that using cGMP-specific antibody, sGC or PDE activity and the effect of small molecules modulating their function can be studied with sub-picomole cGMP sensitivity. The results further indicate that the method is suitable for monitoring enzyme reactions also in complex biological cellular homogenates and mixture.


2020 ◽  
Vol 2020 ◽  
pp. 1-22
Author(s):  
Jia Wang ◽  
Wenting You ◽  
Ningning Wang ◽  
Wei Zhou ◽  
Yunxuan Ge ◽  
...  

Ophiopogonin D (OPD), a compound from the Chinese herb Radix Ophiopogonis, reportedly induces increased levels of cytochrome P450 2J3 (CYP2J3)/epoxyeicosatrienoic acids (EETs) and Ca2+ in rat cardiomyocytes. Little is known regarding the specific mechanism between CYP2J3 and Ca2+ homeostasis. Here, we investigated whether CYP2J3 is involved in the protective action of OPD on the myocardium by activating the Ca2+ homeostasis-related protein complex (SERCA2a and PLB) in H9c2 rat cardiomyoblast cells. The interaction between SERCA2a and PLB was measured using fluorescence resonance energy transfer. OPD attenuated heart failure and catalyzed the active transport of Ca2+ into the sarcoplasmic reticulum by inducing the phosphorylation of PLB and promoting the SERCA2a activity. These beneficial effects of OPD on heart failure were abolished after knockdown of CYP2J3 in a model of heart failure. Together, our results identify CYP2J3 as a critical intracellular target for OPD and unravel a mechanism of CYP2J3-dependent regulation of intracellular Ca2+.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Guido Boerrigter ◽  
Lisa C Costello-Boerrigter ◽  
Harald Lapp ◽  
Johannes-Peter Stasch ◽  
John C Burnett

Background: B-type natriuretic peptide (BNP) signals via particulate guanylyl cyclase (pGC) and cyclic guanosine monophosphate (cGMP). In heart failure (HF), BNP reduces cardiac filling pressures and in selected patients augments sodium excretion and glomerular filtration rate (GFR). Studies have established that pGC and soluble guanylyl cyclase (sGC), the main target of nitric oxide (NO), can be compartmentalized with both enzymes affecting distinct intracellular cGMP pools, resulting in different biological actions. Importantly, sGC may be oxidized in disease states like HF making it unresponsive to NO and nitrovasodilators. BAY 58 –2667 (BAY) is a novel NO and heme independent sGC activator that preferentially stimulates oxidized sGC. We hypothesized that adding direct sGC stimulation with BAY to pGC activation with BNP in HF would enhance vasodilation and cardiac unloading without attenuating the distinct renal actions of BNP. Methods: Severe HF was induced by tachypacing in 13 dogs. On day 11, cardiorenal function was assessed in an acute study under anesthesia at baseline and with intravenous BNP (50 ng/kg/min) alone or in combination with BAY (0.3 ug/kg/min). Results: BNP significantly increased urine flow (UV), urinary sodium excretion (UNaV), GFR, renal blood flow (RBF) and systemic vascular resistance (SVR) and decreased cardiac output (CO), mean arterial pressure (MAP), right atrial pressure (RAP) and pulmonary capillary wedge pressure (PCWP). Despite a greater decrease in MAP compared to BNP, BAY+BNP resulted in similar increases in UNaV, UV and GFR. Dual pGC and sGC stimulation resulted in greater decreases in SVR, RAP and PCWP together with an augmentation of CO compared to BNP alone. Conclusion: Particulate GC activation with BNP in experimental HF enhances renal function and leads to renal but not systemic vasodilation. Addition of the sGC stimulator BAY provides systemic vasodilation, greater cardiac unloading, and augmented CO. Despite a larger decrease in MAP, additional sGC stimulation does not impair the renal actions observed with pGC stimulation alone. These findings support coactivation of sGC with BAY and pGC with BNP as a novel and beneficial therapeutic strategy in HF to optimize activation of distinct GC enzymes and cGMP.


2021 ◽  
Vol 22 (2) ◽  
pp. 539
Author(s):  
Yüksel Korkmaz ◽  
Behrus Puladi ◽  
Kerstin Galler ◽  
Peer W. Kämmerer ◽  
Agnes Schröder ◽  
...  

Nitric oxide (NO) binds to soluble guanylyl cyclase (sGC), activates it in a reduced oxidized heme iron state, and generates cyclic Guanosine Monophosphate (cGMP), which results in vasodilatation and inhibition of osteoclast activity. In inflammation, sGC is oxidized and becomes insensitive to NO. NO- and heme-independent activation of sGC requires protein expression of the α1- and β1-subunits. Inflammation of the periodontium induces the resorption of cementum by cementoclasts and the resorption of the alveolar bone by osteoclasts, which can lead to tooth loss. As the presence of sGC in cementoclasts is unknown, we investigated the α1- and β1-subunits of sGC in cementoclasts of healthy and inflamed human periodontium using double immunostaining for CD68 and cathepsin K and compared the findings with those of osteoclasts from the same sections. In comparison to cementoclasts in the healthy periodontium, cementoclasts under inflammatory conditions showed a decreased staining intensity for both α1- and β1-subunits of sGC, indicating reduced protein expression of these subunits. Therefore, pharmacological activation of sGC in inflamed periodontal tissues in an NO- and heme-independent manner could be considered as a new treatment strategy to inhibit cementum resorption.


Author(s):  
Thomas J Pirtle ◽  
Richard A Satterlie

Abstract Typically, the marine mollusk, Clione limacina, exhibits a slow, hovering locomotor gait to maintain its position in the water column. However, the animal exhibits behaviorally relevant locomotor swim acceleration during escape response and feeding behavior. Both nitric oxide and serotonin mediate this behavioral swim acceleration. In this study, we examine the role that the second messenger, cGMP, plays in mediating nitric oxide and serotonin-induced swim acceleration. We observed that the application of an analog of cGMP or an activator of soluble guanylyl cyclase increased fictive locomotor speed recorded from Pd-7 interneurons of the animal’s locomotor central pattern generator. Moreover, inhibition of soluble guanylyl cyclase decreased fictive locomotor speed. These results suggest that basal levels of cGMP are important for slow swimming and that increased production of cGMP mediates swim acceleration in Clione. Because nitric oxide has its effect through cGMP signaling and because we show herein that cGMP produces cellular changes in Clione swim interneurons that are consistent with cellular changes produced by serotonin application, we hypothesize that both nitric oxide and serotonin function via a common signal transduction pathway that involves cGMP. Our results show that cGMP mediates nitric oxide-induced but not serotonin-induced swim acceleration in Clione.


1990 ◽  
Vol 24 (11) ◽  
pp. 946-952 ◽  
Author(s):  
J.-B. Michel ◽  
J.-J. Mercadier ◽  
F.-X. Galen ◽  
R. Urbain ◽  
J.-C. Dussaule ◽  
...  

2018 ◽  
Vol 115 (3) ◽  
pp. 546-555 ◽  
Author(s):  
Zeynep Bastug-Özel ◽  
Peter T Wright ◽  
Axel E Kraft ◽  
Davor Pavlovic ◽  
Jacqueline Howie ◽  
...  

Abstract Aims Cyclic adenosine monophosphate (cAMP) regulates cardiac excitation–contraction coupling by acting in microdomains associated with sarcolemmal ion channels. However, local real time cAMP dynamics in such microdomains has not been visualized before. We sought to directly monitor cAMP in a microdomain formed around sodium–potassium ATPase (NKA) in healthy and failing cardiomyocytes and to better understand alterations of cAMP compartmentation in heart failure. Methods and results A novel Förster resonance energy transfer (FRET)-based biosensor termed phospholemman (PLM)-Epac1 was developed by fusing a highly sensitive cAMP sensor Epac1-camps to the C-terminus of PLM. Live cell imaging in PLM-Epac1 and Epac1-camps expressing adult rat ventricular myocytes revealed extensive regulation of NKA/PLM microdomain-associated cAMP levels by β2-adrenoceptors (β2-ARs). Local cAMP pools stimulated by these receptors were tightly controlled by phosphodiesterase (PDE) type 3. In chronic heart failure following myocardial infarction, dramatic reduction of the microdomain-specific β2-AR/cAMP signals and β2-AR dependent PLM phosphorylation was accompanied by a pronounced loss of local PDE3 and an increase in PDE2 effects. Conclusions NKA/PLM complex forms a distinct cAMP microdomain which is directly regulated by β2-ARs and is under predominant control by PDE3. In heart failure, local changes in PDE repertoire result in blunted β2-AR signalling to cAMP in the vicinity of PLM.


Heart ◽  
2018 ◽  
Vol 104 (5) ◽  
pp. 377-384 ◽  
Author(s):  
Rosita Zakeri ◽  
Martin R Cowie

Heart failure with preserved ejection fraction (HFpEF) comprises almost half of the population burden of HF. Because HFpEF likely includes a range of cardiac and non-cardiac abnormalities, typically in elderly patients, obtaining an accurate diagnosis may be challenging, not least due to the existence of multiple HFpEF mimics and a newly identified subset of patients with HFpEF and normal plasma natriuretic peptide concentrations. The lack of effective treatment for these patients represents a major unmet clinical need. Heterogeneity within the patient population has triggered debate over the aetiology and pathophysiology of HFpEF, and the neutrality of randomised clinical trials suggests that we do not fully understand the syndrome(s). Dysregulated nitric oxide–cyclic guanosine monophosphate–protein kinase G signalling, driven by comorbidities and ageing, may be the fundamental abnormality in HFpEF, resulting in a systemic inflammatory state and microvascular endothelial dysfunction. Novel informatics platforms are also being used to classify HFpEF into subphenotypes, based on statistically clustered clinical and biological characteristics: whether such subclassification will lead to more targeted therapies remains to be seen. In this review, we summarise current concepts and controversies, and highlight the diagnostic and therapeutic challenges in clinical practice. Novel treatments and disease management strategies are discussed, and the large gaps in our knowledge identified.


2019 ◽  
Vol 393 (2) ◽  
pp. 287-302 ◽  
Author(s):  
Andreas Friebe ◽  
Peter Sandner ◽  
Achim Schmidtko

AbstractCyclic guanosine monophosphate (cGMP) is a unique second messenger molecule formed in different cell types and tissues. cGMP targets a variety of downstream effector molecules and, thus, elicits a very broad variety of cellular effects. Its production is triggered by stimulation of either soluble guanylyl cyclase (sGC) or particulate guanylyl cyclase (pGC); both enzymes exist in different isoforms. cGMP-induced effects are regulated by endogenous receptor ligands such as nitric oxide (NO) and natriuretic peptides (NPs). Depending on the distribution of sGC and pGC and the formation of ligands, this pathway regulates not only the cardiovascular system but also the kidney, lung, liver, and brain function; in addition, the cGMP pathway is involved in the pathogenesis of fibrosis, inflammation, or neurodegeneration and may also play a role in infectious diseases such as malaria. Moreover, new pharmacological approaches are being developed which target sGC- and pGC-dependent pathways for the treatment of various diseases. Therefore, it is of key interest to understand this pathway from scratch, beginning with the molecular basis of cGMP generation, the structure and function of both guanylyl cyclases and cGMP downstream targets; research efforts also focus on the subsequent signaling cascades, their potential crosstalk, and also the translational and, ultimately, the clinical implications of cGMP modulation. This review tries to summarize the contributions to the “9th International cGMP Conference on cGMP Generators, Effectors and Therapeutic Implications” held in Mainz in 2019. Presented data will be discussed and extended also in light of recent landmark findings and ongoing activities in the field of preclinical and clinical cGMP research.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Gaia Calamera ◽  
Dan Li ◽  
Andrea Hembre Ulsund ◽  
Jeong Joo Kim ◽  
Oliver C. Neely ◽  
...  

Abstract Several FRET (fluorescence resonance energy transfer)-based biosensors for intracellular detection of cyclic nucleotides have been designed in the past decade. However, few such biosensors are available for cGMP, and even fewer that detect low nanomolar cGMP concentrations. Our aim was to develop a FRET-based cGMP biosensor with high affinity for cGMP as a tool for intracellular signaling studies. We used the carboxyl-terminal cyclic nucleotide binding domain of Plasmodium falciparum cGMP-dependent protein kinase (PKG) flanked by different FRET pairs to generate two cGMP biosensors (Yellow PfPKG and Red PfPKG). Here, we report that these cGMP biosensors display high affinity for cGMP (EC50 of 23 ± 3 nM) and detect cGMP produced through soluble guanylyl cyclase and guanylyl cyclase A in stellate ganglion neurons and guanylyl cyclase B in cardiomyocytes. These biosensors are therefore optimal tools for real-time measurements of low concentrations of cGMP in living cells.


Sign in / Sign up

Export Citation Format

Share Document