scholarly journals Robo recruitment of the Wave Regulatory Complex plays an essential and conserved role in midline repulsion

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Karina Chaudhari ◽  
Madhavi Gorla ◽  
Chao Chang ◽  
Artur Kania ◽  
Greg J Bashaw

The Roundabout (Robo) guidance receptor family induces axon repulsion in response to its ligand Slit by inducing local cytoskeletal changes; however, the link to the cytoskeleton and the nature of these cytoskeletal changes are poorly understood. Here, we show that the heteropentameric Scar/Wave Regulatory Complex (WRC) which drives Arp2/3-induced branched actin polymerization, is a direct effector of Robo signaling. Biochemical evidence shows that Slit triggers WRC recruitment to the Robo receptor's WIRS motif. In Drosophila embryos, mutants of the WRC enhance Robo1-dependent midline crossing defects. Additionally, mutating Robo1's WIRS motif significantly reduces receptor activity in rescue assays in vivo, and CRISPR-Cas9 mutagenesis shows that the WIRS motif is essential for endogenous Robo1 function. Finally, axon guidance assays in mouse dorsal spinal commissural axons and gain-of-function experiments in chick embryos demonstrate that the WIRS motif is also required for Robo1 repulsion in mammals. Together, our data support an essential conserved role for the WIRS-WRC interaction in Robo1-mediated axon repulsion.

2020 ◽  
Author(s):  
Karina Chaudhari ◽  
Madhavi Gorla ◽  
Chao Chang ◽  
Artur Kania ◽  
Greg J. Bashaw

SUMMARYThe Roundabout (Robo) guidance receptor family induces axon repulsion in response to its ligand Slit by inducing local cytoskeletal changes; however, the link to the cytoskeleton and the nature of these cytoskeletal changes are unclear. Here we show that the heteropentameric Scar/Wave Regulatory Complex (WRC) which drives Arp2/3-induced branched actin polymerization, is a direct effector of Robo signaling. Biochemical evidence shows that Slit triggers WRC recruitment to the Robo receptor’s WIRS motif. In Drosophila embryos, mutants of the WRC enhance Robol-dependent midline crossing defects. Additionally, mutating Robo1’s WIRS motif significantly reduces receptor activity in rescue assays in vivo, and CRISPR-Cas9 mutagenesis shows that the WIRS motif is essential for endogenous Robo1 function. Finally, axon guidance assays in mouse dorsal spinal commissural axons demonstrate that the WIRS motif is also required for Robo1 repulsion in mammals. Together, our data support an essential conserved role for the WRC in commissural axon repulsion.


2016 ◽  
Vol 213 (2) ◽  
pp. 261-274 ◽  
Author(s):  
Russell E. McConnell ◽  
J. Edward van Veen ◽  
Marina Vidaki ◽  
Adam V. Kwiatkowski ◽  
Aaron S. Meyer ◽  
...  

Axons navigate long distances through complex 3D environments to interconnect the nervous system during development. Although the precise spatiotemporal effects of most axon guidance cues remain poorly characterized, a prevailing model posits that attractive guidance cues stimulate actin polymerization in neuronal growth cones whereas repulsive cues induce actin disassembly. Contrary to this model, we find that the repulsive guidance cue Slit stimulates the formation and elongation of actin-based filopodia from mouse dorsal root ganglion growth cones. Surprisingly, filopodia form and elongate toward sources of Slit, a response that we find is required for subsequent axonal repulsion away from Slit. Mechanistically, Slit evokes changes in filopodium dynamics by increasing direct binding of its receptor, Robo, to members of the actin-regulatory Ena/VASP family. Perturbing filopodium dynamics pharmacologically or genetically disrupts Slit-mediated repulsion and produces severe axon guidance defects in vivo. Thus, Slit locally stimulates directional filopodial extension, a process that is required for subsequent axonal repulsion downstream of the Robo receptor.


2018 ◽  
Vol 115 (35) ◽  
pp. E8236-E8245
Author(s):  
Shih-Yu Chen ◽  
Chun-Ta Ho ◽  
Wei-Wen Liu ◽  
Mark Lucanic ◽  
Hsiu-Ming Shih ◽  
...  

During neural development, growing axons express specific surface receptors in response to various environmental guidance cues. These axon guidance receptors are regulated through intracellular trafficking and degradation to enable navigating axons to reach their targets. In Caenorhabditis elegans, the UNC-5 receptor is necessary for dorsal migration of developing motor axons. We previously found that MAX-1 is required for UNC-5–mediated axon repulsion, but its mechanism of action remained unclear. Here, we demonstrate that UNC-5–mediated axon repulsion in C. elegans motor axons requires both max-1 SUMOylation and the AP-3 complex β subunit gene, apb-3. Genetic interaction studies show that max-1 is SUMOylated by gei-17/PIAS1 and acts upstream of apb-3. Biochemical analysis suggests that constitutive interaction of MAX-1 and UNC-5 receptor is weakened by MAX-1 SUMOylation and by the presence of APB-3, a competitive interactor with UNC-5. Overexpression of APB-3 reroutes the trafficking of UNC-5 receptor into the lysosome for protein degradation. In vivo fluorescence recovery after photobleaching experiments shows that MAX-1 SUMOylation and APB-3 are required for proper trafficking of UNC-5 receptor in the axon. Our results demonstrate that SUMOylation of MAX-1 plays an important role in regulating AP-3–mediated trafficking and degradation of UNC-5 receptors during axon guidance.


2021 ◽  
Author(s):  
LaFreda J. Howard ◽  
Marie C. Reichert ◽  
Timothy A. Evans

Drosophila Robo2 is a member of the evolutionarily conserved Roundabout (Robo) family of axon guidance receptors. The canonical role of Robo receptors is to signal midline repulsion in response to their cognate Slit ligands, which bind to the N-terminal Ig1 domain in most Robo family members. In the Drosophila embryonic ventral nerve cord, Robo1 and Robo2 cooperate to signal Slit-dependent midline repulsion, while Robo2 also regulates the medial-lateral position of longitudinal axon pathways and acts non-autonomously to promote midline crossing of commissural axons. Although it is clear that Robo2 signals midline repulsion in response to Slit, it is less clear whether Robo2's other activities are also Slit-dependent. To determine which of Robo2's axon guidance roles depend on its Slit-binding Ig1 domain, we have used a CRISPR/Cas9-based strategy replace the endogenous robo2 gene with a robo2 variant from which the Ig1 domain has been deleted (robo2ΔIg1). We compare the expression and localization of Robo2ΔIg1 protein with that of full-length Robo2 in embryonic neurons in vivo, and examine its ability to substitute for Robo2 to mediate midline repulsion and lateral axon pathway formation. We find that removal of the Ig1 domain from Robo2ΔIg1 disrupts both of these axon guidance activities. In addition, we find that the Ig1 domain of Robo2 is required for its proper subcellular localization in embryonic neurons, a role that is not shared by the Ig1 domain of Robo1. Finally, we report that although FasII-positive lateral axons are misguided in embryos expressing Robo2ΔIg1, the axons that normally express Robo2 are correctly guided to the lateral zone, suggesting that Robo2 may guide lateral longitudinal axons through a cell non-autonomous mechanism.


Development ◽  
2002 ◽  
Vol 129 (12) ◽  
pp. 2947-2956 ◽  
Author(s):  
Marios Georgiou ◽  
Guy Tear

In the absence of Commissureless (Comm) function, axons are unable to extend across the central nervous system midline. Comm downregulates levels of Roundabout (Robo), a receptor for the midline repellent Slit, in order to allow axons to cross the midline. comm transcript is expressed at high levels in the midline glia and Comm protein accumulates on axons at the midline. This has led to the hypothesis that Comm moves from the midline glia to the axons, where it can reduce Robo levels. We have found that expression of Comm in the midline cells is unable to rescue the comm phenotype and that tagged versions of Comm are not transferred to axons. A re-examination of Comm protein expression and the use of targeted RNA interference reveal that correct midline crossing requires that Comm is expressed in the commissural axons and midline glia. We suggest that accumulation of Comm protein at the midline spatially limits Comm activity and prevents it from being active on the contralateral side of the central nervous system.


2015 ◽  
Vol 29 (24) ◽  
pp. 2617-2632
Author(s):  
Berenice Hernandez-Enriquez ◽  
Zhuhao Wu ◽  
Edward Martinez ◽  
Olav Olsen ◽  
Zaven Kaprielian ◽  
...  

Commissural axon guidance depends on a myriad of cues expressed by intermediate targets. Secreted semaphorins signal through neuropilin-2/plexin-A1 receptor complexes on post-crossing commissural axons to mediate floor plate repulsion in the mouse spinal cord. Here, we show that neuropilin-2/plexin-A1 are also coexpressed on commissural axons prior to midline crossing and can mediate precrossing semaphorin-induced repulsion in vitro. How premature semaphorin-induced repulsion of precrossing axons is suppressed in vivo is not known. We discovered that a novel source of floor plate-derived, but not axon-derived, neuropilin-2 is required for precrossing axon pathfinding. Floor plate-specific deletion of neuropilin-2 significantly reduces the presence of precrossing axons in the ventral spinal cord, which can be rescued by inhibiting plexin-A1 signaling in vivo. Our results show that floor plate-derived neuropilin-2 is developmentally regulated, functioning as a molecular sink to sequester semaphorins, preventing premature repulsion of precrossing axons prior to subsequent down-regulation, and allowing for semaphorin-mediated repulsion of post-crossing axons.


2003 ◽  
Vol 15 (3) ◽  
pp. 549-564 ◽  
Author(s):  
Geoffrey J. Goodhill

After crossing the midline, different populations of commissural axons in Drosophila target specific longitudinal pathways at different distances from the midline. It has recently been shown that this choice of lateral position is governed by the particular combination of Robo receptors expressed by these axons, presumably in response to a gradient of Slit released by the midline. Here we propose a simple theoretical model of this combinatorial coding scheme. The principal results of the model are that purely quantitative rather than qualitative differences between the different Robo receptors are sufficient to account for the effects observed following removal or ectopic expression of specific Robo receptors, and that the steepness of the Slit gradient in vivo must exceed a certain minimum for the results observed experimentally to be consistent.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Thomas Baeriswyl ◽  
Alexandre Dumoulin ◽  
Martina Schaettin ◽  
Georgia Tsapara ◽  
Vera Niederkofler ◽  
...  

Axon navigation depends on the interactions between guidance molecules along the trajectory and specific receptors on the growth cone. However, our in vitro and in vivo studies on the role of Endoglycan demonstrate that in addition to specific guidance cue – receptor interactions, axon guidance depends on fine-tuning of cell-cell adhesion. Endoglycan, a sialomucin, plays a role in axon guidance in the central nervous system of chicken embryos, but it is neither an axon guidance cue nor a receptor. Rather, Endoglycan acts as a negative regulator of molecular interactions based on evidence from in vitro experiments demonstrating reduced adhesion of growth cones. In the absence of Endoglycan, commissural axons fail to properly navigate the midline of the spinal cord. Taken together, our in vivo and in vitro results support the hypothesis that Endoglycan acts as a negative regulator of cell-cell adhesion in commissural axon guidance.


Development ◽  
2020 ◽  
Vol 147 (20) ◽  
pp. dev196055
Author(s):  
Riley Kellermeyer ◽  
Leah M. Heydman ◽  
Taylor Gillis ◽  
Grant S. Mastick ◽  
Minmin Song ◽  
...  

ABSTRACTSlit is a secreted protein that has a canonical function of repelling growing axons from the CNS midline. The full-length Slit (Slit-FL) is cleaved into Slit-N and Slit-C fragments, which have potentially distinct functions via different receptors. Here, we report that the BMP-1/Tolloid family metalloprotease Tolkin (Tok) is responsible for Slit proteolysis in vivo and in vitro. In Drosophilatok mutants lacking Slit cleavage, midline repulsion of axons occurs normally, confirming that Slit-FL is sufficient to repel axons. However, longitudinal axon guidance is highly disrupted in tok mutants and can be rescued by midline expression of Slit-N, suggesting that Slit is the primary substrate for Tok in the embryonic CNS. Transgenic restoration of Slit-N or Slit-C does not repel axons in Slit-null flies. Slit-FL and Slit-N are both biologically active cues with distinct axon guidance functions in vivo. Slit signaling is used in diverse biological processes; therefore, differentiating between Slit-FL and Slit fragments will be essential for evaluating Slit function in broader contexts.


Author(s):  
M.J.C. Hendrix ◽  
D.E. Morse

Atrial septal defects are considered the most common congenital cardiac anomaly occurring in humans. In studying the normal sequential development of the atrial septum, chick embryos of the White Leghorn strain were prepared for scanning electron microscopy and the results were then extrapolated to the human heart. One-hundred-eighty chick embryos from 2 to 21 days of age were removed from their shells and immersed in cold cacodylate-buffered aldehyde fixative . Twenty-four embryos through the first week post-hatching were perfused in vivo using cold cacodylate-buffered aldehyde fixative with procaine hydrochloride. The hearts were immediately dissected free and remained in the fixative a minimum of 2 hours. In most cases, the lateral atrial walls were removed during this period. The tissues were then dehydrated using a series of ascending grades of ethanol; final dehydration of the tissues was achieved via the critical point drying method followed by sputter-coating with goldpalladium.


Sign in / Sign up

Export Citation Format

Share Document