scholarly journals High Gain Circularly Polarized Pentagonal Microstrip for Massive MIMO Base Station

2019 ◽  
Vol 8 (3) ◽  
pp. 83-91
Author(s):  
R. S. Bhadade ◽  
S. P. Mahajan

In this paper we propose a circularly polarized pentagonal microstrip antenna on a suspended substrate with coaxial probe feed and five loaded slits for Massive MIMO BS Antenna applications. Massive Multiple-Input Multiple-Output (MIMO) is one of the key component to be incorporated in the 5G cellular systems. The proposed antenna is successfully simulated using HFSS 13.0, fabricated on a FR-4 substrate and measured. The proposed antenna exhibits a much higher gain of 6.17dB, improved impedance bandwidth of 171.9 MHz (Return loss, S11= -10dB) , axial ratio bandwidth (< 3dB) of 135 MHz , patch area of 1775 mm2  , and also yields return loss better than -15 dB around the center frequency of 2.45 GHz (ISM Band). Measured characteristics of the antenna are in good agreement with the simulated results.

2015 ◽  
Vol 8 (7) ◽  
pp. 1101-1109 ◽  
Author(s):  
Pravin R. Prajapati ◽  
Amalendu Patnaik ◽  
M. V. Kartikeyan

A novel asymmetric “+” shaped fractal slotted circularly polarized microstrip antenna with a Yagi–Uda structure is proposed. Four asymmetric plus shape slots are embedded symmetrically in the center of all four quadrants of a square patch. To suppress undesirable higher modes, dumbbell-shaped defected ground structure (DGS) is introduced at the ground layer of the antenna. We introduce a method to compensate the reduction in gain occurring due to the presence of DGS, without changing in the overall size of the antenna. A 3 dB axial ratio bandwidth of 4 MHz at center frequency of 862 MHz, 10 dB impedance bandwidth of 13.20 MHz and a gain of 4.25 dB is achieved with the proposed antenna. A laboratory prototype of the proposed antenna is made to cross-verify the simulation results. Very good agreements between the two are obtained. The proposed antenna may prove useful for International Mobile Telecommunication application for designing high-gain arrays.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Preet Kaur ◽  
Pravin R. Prajapati

Abstract A bilayer split-ring chiral metamaterial converts the linearly polarized wave, into a nearly perfect left or right-handed circularly polarized wave. The proposed antenna is intended to operate at center frequency of 5.80 GHz with switchable polarization capability. The polarization re-configurability is achieved by electronically switching of two PIN-diode pairs, which are embedded into bilayer split-ring Chiral Metamaterial. The optimized length of rectangular patch is 16 mm and width is 12.1 mm. Two types of radiation characteristics offered by the proposed antenna; left hand circularly polarized in mode 1 and right hand circularly polarized in mode 2. Measured results show that its impedance bandwidth is 155 MHz from 5.70 to 5.855 GHz for both mode 1 and mode 2. The measured axial-ratio bandwidth is 100 MHz from 5.75 to 5.85 GHz for mode 1 and 110 MHz from 5.73 to 5.84 GHz for mode 2. Antenna has LHCP gain of 2.52 dBi and RHCP gain of −23 dBi in mode 1. RHCP gain of 2 dBi and polarization purity of about −20 dBi is obtained in mode 2. The proposed antenna has simple structure, low cost and it has potential application in field of wireless communication (i.e., WiMax, WLAN etc.).


Author(s):  
Yusnita Rahayu ◽  
Indah Permata Sari ◽  
Dara Incam Ramadhan ◽  
Razali Ngah

This article presented a millimeter wave antenna which operated at 38 GHz for 5G mobile base station. The MIMO (Multiple Input Multiple Output) antenna consisted of 1x10 linear array configurations. The proposed antenna’s size was 88 x 98 mm^2  and printed on 1.575 mm-thick Rogers Duroid 5880 subsrate with dielectric constant of ε_r= 2.2 and loss tangent (tanδ) of 0.0009. The antenna array covered along the azimuth plane to provide the coverage to the users in omnidirection. The simulated results showed that the single element antenna had the reflection coefficient (S11) of -59 dB, less than -10 dB in the frequency range of 35.5 - 39.6 GHz. More than 4.1 GHz of impedance bandwidth was obtained. The gain of the antenna linear array was 17.8 dBi while the suppression of the side lobes was -2.7 dB.  It showed a high array gain throughout the impedance bandwidth with overall of VSWR were below 1.0646. It designed using CST microwave studio.


Author(s):  
Sanyog Rawat ◽  
Kamlesh Kumar Sharma

<p class="Abstract"><span style="font-weight: normal;">In this paper a new geometry of patch antenna is proposed with improved bandwidth and circular polarization. The radiation performance of circularly polarized rectangular patch antenna is investigated by applying IE3D simulation software and its performance is compared with that of conventional rectangular patch antenna.</span> <span style="font-weight: normal;">Finite Ground truncation technique is used to obtain the desired results. The simulated return loss, axial ratio and smith chart with frequency for the proposed antenna is reported in this paper. It is shown that by selecting suitable ground-plane dimensions, air gap and location of the slits, the impedance bandwidth can be enhanced upto 10.15 % as compared to conventional rectangular patch (4.24%) with an axial ratio bandwidth of 4.05%.</span></p><p> </p><p> </p>


2018 ◽  
Vol 7 (3.4) ◽  
pp. 80
Author(s):  
Saritha Vanka ◽  
Tanmayi Seedrala ◽  
Jhansi Rani Areti

This work presents a circularly polarized, CPW-Fed multi band operating monopole antenna. The monopole antenna consists of three parasitic elements, along with a stub at ground for impedance matching. The parasitic elements so far accumulated have shown their excellence in increasing the impedance bandwidth over the 6-18GHz band. The antenna was carved on FR-4 epoxy substrate which result a copper clad laminated structure. The CPW-Fed monopole antenna exhibits excellent circular polarization levels in the frequency region 6-18GHz. The simulation resulted a Return loss of less than -10dB, with good axial ratio less than -3dB over entire band of interest. The simulation was carried out through HFSS microwave studio. The antenna measured values are in good correspondence to the simulated values. 


2018 ◽  
Vol 11 (2) ◽  
pp. 182-189 ◽  
Author(s):  
Shilpee Patil ◽  
Anil Kumar Singh ◽  
Binod Kumar Kanaujia ◽  
R. L. Yadava

AbstractThis paper presents a compact microstrip antenna using FR-4 substrate for dual band circularly polarized operation using a modified square ring slot in the ground plane with microstrip line feed. Simulation of the impedance characteristic and radiation characteristic for the proposed antenna is carried out using commercially available HFSS software. The simulated data validate measured results and shows good agreement. Proposed antenna shows an impedance bandwidth (return loss >10 dB) of 50.88% at 5.9 GHz of center frequency and 29.92% at 12.8 GHz of center frequency for lower and upper band, respectively. The 3 dB axial ratio bandwidth for lower and upper band is 26.4 and 3.0%, respectively and measured peak gain for the lower and upper band is found as 3.2 and 3.4 dBic, respectively. The proposed antenna can be suitable for wireless communication in C and Ku bands.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5610
Author(s):  
Sachin Kumar ◽  
Gwan Hui Lee ◽  
Dong Hwi Kim ◽  
Hyun Chul Choi ◽  
Kang Wook Kim

A broadband compact-sized planar four-port multiple-input–multiple-output (MIMO) antenna with polarization diversity is presented. The proposed dual circularly polarized (CP) MIMO antenna consists of four G-shaped monopole elements, two of which are left-hand CP and the other two are right-hand CP. A vertical line strip in the G-shaped radiating element acts in balancing the vertical and horizontal electric field components to obtain 90° phase difference between them for circular polarization. Also, an I-shaped strip is incorporated between the ground planes of the G-shaped antenna elements to obtain equal voltage level in the proposed MIMO configuration. The dual circular polarization mechanism of the proposed MIMO/diversity antenna is analysed from the vector current distributions. The impedance bandwidth (S11 ≤ –10 dB) of the MIMO antenna is 105.9% (4–13 GHz) and the 3 dB axial ratio bandwidth (ARBW) is 67.7% (4.2–8.5 GHz), which is suitable for C-band applications. The overall size of the MIMO antenna is 70 × 68 × 1.6 mm3, and the minimum isolation between the resonating elements is 18 dB. The envelope correlation coefficient is less than 0.25, and the peak gain within the resonating band is 6.4 dBi.


2016 ◽  
Vol 9 (3) ◽  
pp. 697-703 ◽  
Author(s):  
Nagendra Kushwaha ◽  
Raj Kumar

This paper presents a high gain, wideband circularly polarized (CP) antenna. High gain of the antenna is achieved by employing a frequency selective surface (FSS) as a reflector. The antenna is a coplanar waveguide-fed structure with a modified L-shaped radiating patch. The unit element of the FSS is formed by connecting two modified dipoles at an angle of 90°. The antenna with reflector has a measured impedance bandwidth of 74.3% (2.2–4.8 GHz) and a 3-dB axial ratio bandwidth (ARBW) of 62% (2.2–4.18 GHz). The maximum boresight gain of the proposed antenna with reflector is 7.1 dB at 3.4 GHz. The radiation patterns of the antenna with the FSS are also measured and compared with simulated patterns. The various aspects of effect of FSS on CP antenna performance are also discussed.


2013 ◽  
Vol 756-759 ◽  
pp. 655-659 ◽  
Author(s):  
Yong Li ◽  
Chuan Yun Zou

In order to track and identify remote cargo with electronic label, the electronic label may carry GPS module. To GPS modules antenna, not only the factors such as impedance bandwidth and axial ratio bandwidth are considered, but also the stability of the phase center is more concerned about, due to it determines the precision and accuracy of location. At the same time it requires that axial ratio is less than 3 db in wide angle range of elevation theta. Realizes circular polarized GPS antenna through the orthogonal 4-fed mode and Wilkinson power splitters, in addition, calibrates and optimizes the average phase center of antenna through the optimization algorithm. The simulation results show that GPS antenna works in the L-band 1.575 GHz,impedance bandwidth in which return loss less than-10 db achieves 91.4 MHz,and coverages: 1.5358 ~ 1.6272 GHz; 3db axis ratio bandwidth achieves 305 MHz in the biggest gain direction of XOZ section;In the center frequency point 1.575 GHz, elevation theta which corresponds 3db axis ratio coverages: -119.2°to 111.5°; The stability of the phase center is less than 3 mm.


2021 ◽  
Author(s):  
SACHIN KUMAR YADAV ◽  
Amanpreet Kaur ◽  
Rajesh Khanna

Abstract A circularly polarized hollow dielectric resonator antenna (CPHDRA) is designed for X-band applications. Rectangular dielectric resonator (RDR) is used as a radiator element, fed by a quarter-wave transformer (QWT) feedline. By performance of the RDR antenna, an air cylindrical rod structure is extracted from RDR to enhance the gain and impedance bandwidth. Two parasitic strips are placed on the top of the RDR to achieve circular polarization with reported ≤ 3-dB axial ratio (AR) bandwidth for X-band applications. In this article, UWB antenna covers range from 2.74 to 10.4GHz by using asymmetrical defective ground structure (DGS). In near field of the dielectric resonator, three different radiating modes namely HE11δ, HE21δ, HE23δ, and HE32δ are at 4.4, 6, 8.8, and 9.9 GHz. For the generation of circular polarization (CP), two orthogonal modes are generated at 8.8 and 9.9 GHz as per XZ and YZ planes. It has reported 23.8 % (8 to 10.1 GHz) of 3-dB AR bandwidth. The simulated and measured impedance bandwidths are 118.46 % and 121.12 % along with a peak gain of 6.55 dB without the use of a metallic reflector. By using a metallic reflector suspended in the bottom side of the substrate with a distance of 13.1mm is reported along with the peak gain of 9.8 dBi.


Sign in / Sign up

Export Citation Format

Share Document