scholarly journals Differential effects of cotreatment of the antibiotic rifampin with host-directed therapeutics in reducing intracellular Staphylococcus aureus infection

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10330
Author(s):  
Melissa D. Evans ◽  
Robert Sammelson ◽  
Susan McDowell

Background Chronic infection by Staphylococcus aureus drives pathogenesis in important clinical settings, such as recurrent pulmonary infection in cystic fibrosis and relapsing infection in osteomyelitis. Treatment options for intracellular S. aureus infection are limited. Rifampin, a lipophilic antibiotic, readily penetrates host cell membranes, yet monotherapy is associated with rapid antibiotic resistance and development of severe adverse events. Antibiotic cotreatment can reduce this progression, yet efficacy diminishes as antibiotic resistance develops. ML141 and simvastatin inhibit S. aureus invasion through host-directed rather than bactericidal mechanisms. Objective To determine whether cotreatment of ML141 or of simvastatin with rifampin would enhance rifampin efficacy. Methods Assays to assess host cell invasion, host cell viability, host cell membrane permeability, and bactericidal activity were performed using the human embryonic kidney (HEK) 293-A cell line infected with S. aureus (29213) and treated with vehicle control, simvastatin, ML141, rifampin, or cotreatment of simvastatin or ML141 with rifampin. Results We found cotreatment of ML141 with rifampin reduced intracellular infection nearly 85% when compared to the no treatment control. This decrease more than doubled the average 40% reduction in response to rifampin monotherapy. In contrast, cotreatment of simvastatin with rifampin failed to improve rifampin efficacy. Also, in contrast to ML141, simvastatin increased propidium iodide (PI) positive cells, from an average of 10% in control HEK 293-A cells to nearly 20% in simvastatin-treated cells, indicating an increase in host cell membrane permeability. The simvastatin-induced increase was reversed to control levels by cotreatment of simvastatin with rifampin. Conclusion Taken together, rifampin efficacy is increased through host-directed inhibition of S. aureus invasion by ML141, while efficacy is not increased by simvastatin. Considerations regarding novel therapeutic approaches may be dependent on underlying differences in pharmacology.

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Hsiu-Yang Tseng ◽  
Chiu-Jen Chen ◽  
Zong-Lin Wu ◽  
Yong-Ming Ye ◽  
Guo-Zhen Huang

Cell-membrane permeability to water (Lp) and cryoprotective agents (Ps) of a cell type is a crucial cellular information for achieving optimal cryopreservation in the biobanking industry. In this work, a...


2015 ◽  
Vol 10 (2) ◽  
pp. 029521 ◽  
Author(s):  
Toshiro Kaneko ◽  
Shota Sasaki ◽  
Yutaro Hokari ◽  
Shinichi Horiuchi ◽  
Ryusuke Honda ◽  
...  

2019 ◽  
Author(s):  
Yue Wang ◽  
Ji Lu ◽  
Shuai Zhang ◽  
Jie Li ◽  
Likai Mao ◽  
...  

AbstractAntibiotic resistance is a global threat for public health. It is widely acknowledged that antibiotics at sub-inhibitory concentrations are important in disseminating antibiotic resistance via horizontal gene transfer. While there is high use of non-antibiotic human-targeted pharmaceuticals in our societies, the potential contribution of these on the spread of antibiotic resistance has been overlooked so far. Here, we report that commonly consumed non-antibiotic pharmaceuticals, including nonsteroidal anti-inflammatories (ibuprofen, naproxen, diclofenac), a lipid-lowering drug (gemfibrozil), and a β-blocker (propanolol), at clinically and environmentally relevant concentrations, significantly accelerated the conjugation of plasmid-borne antibiotic resistance genes. We looked at the response to these drugs by the bacteria involved in the gene transfer through various analyses that included monitoring reactive oxygen species (ROS) and cell membrane permeability by flow cytometry, cell arrangement, and whole-genome RNA and protein sequencing. We found the enhanced conjugation correlated well with increased production of ROS and cell membrane permeability. We also detected closer cell-to-cell contact and upregulated conjugal genes. Additionally, these non-antibiotic pharmaceuticals caused the bacteria to have responses similar to those detected when exposed to antibiotics, such as inducing the SOS response, and enhancing efflux pumps. The findings advance our understanding of the bacterial transfer of antibiotic resistance genes, and importantly emphasize concerns of non-antibiotic human-targeted pharmaceuticals for enhancing the spread of antibiotic resistance.


Author(s):  
Zhigang Yu ◽  
Yue Wang ◽  
Ji Lu ◽  
Philip L. Bond ◽  
Jianhua Guo

AbstractAntimicrobial resistance (AMR) poses a worldwide threat to human health and biosecurity. The spread of antibiotic resistance genes (ARGs) via conjugative plasmid transfer is a major contributor to the evolution of this resistance. Although permitted as safe food additives, compounds such as saccharine, sucralose, aspartame, and acesulfame potassium that are commonly used as nonnutritive sweeteners have recently been associated with shifts in the gut microbiota similar to those caused by antibiotics. As antibiotics can promote the spread of antibiotic resistance genes (ARGs), we hypothesize that these nonnutritive sweeteners could have a similar effect. Here, we demonstrate for the first time that saccharine, sucralose, aspartame, and acesulfame potassium could promote plasmid-mediated conjugative transfer in three established conjugation models between the same and different phylogenetic strains. The real-time dynamic conjugation process was visualized at the single-cell level. Bacteria exposed to the tested compounds exhibited increased reactive oxygen species (ROS) production, the SOS response, and gene transfer. In addition, cell membrane permeability increased in both parental bacteria under exposure to the tested compounds. The expression of genes involved in ROS detoxification, the SOS response, and cell membrane permeability was significantly upregulated under sweetener treatment. In conclusion, exposure to nonnutritive sweeteners enhances conjugation in bacteria. Our findings provide insight into AMR spread and indicate the potential risk associated with the presence of nonnutritive sweeteners.


PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0143863 ◽  
Author(s):  
Sunjun Yin ◽  
Gaoxiong Rao ◽  
Jin Wang ◽  
Liyang Luo ◽  
Gonghao He ◽  
...  

Author(s):  
M. Ashraf ◽  
L. Landa ◽  
L. Nimmo ◽  
C. M. Bloor

Following coronary artery occlusion, the myocardial cells lose intracellular enzymes that appear in the serum 3 hrs later. By this time the cells in the ischemic zone have already undergone irreversible changes, and the cell membrane permeability is variably altered in the ischemic cells. At certain stages or intervals the cell membrane changes, allowing release of cytoplasmic enzymes. To correlate the changes in cell membrane permeability with the enzyme release, we used colloidal lanthanum (La+++) as a histological permeability marker in the isolated perfused hearts. The hearts removed from sprague-Dawley rats were perfused with standard Krebs-Henseleit medium gassed with 95% O2 + 5% CO2. The hypoxic medium contained mannitol instead of dextrose and was bubbled with 95% N2 + 5% CO2. The final osmolarity of the medium was 295 M osmol, pH 7. 4.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 543
Author(s):  
Ozioma F. Nwabor ◽  
Sukanlaya Leejae ◽  
Supayang P. Voravuthikunchai

As the burden of antibacterial resistance worsens and treatment options become narrower, rhodomyrtone—a novel natural antibiotic agent with a new antibacterial mechanism—could replace existing antibiotics for the treatment of infections caused by multi-drug resistant Gram-positive bacteria. In this study, rhodomyrtone was detected within the cell by means of an easy an inexpensive method. The antibacterial effects of rhodomyrtone were investigated on epidemic methicillin-resistant Staphylococcus aureus. Thin-layer chromatography demonstrated the entrapment and accumulation of rhodomyrtone within the bacterial cell wall and cell membrane. The incorporation of radiolabelled precursors revealed that rhodomyrtone inhibited the synthesis of macromolecules including DNA, RNA, proteins, the cell wall, and lipids. Following the treatment with rhodomyrtone at MIC (0.5–1 µg/mL), the synthesis of all macromolecules was significantly inhibited (p ≤ 0.05) after 4 h. Inhibition of macromolecule synthesis was demonstrated after 30 min at a higher concentration of rhodomyrtone (4× MIC), comparable to standard inhibitor compounds. In contrast, rhodomyrtone did not affect lipase activity in staphylococci—both epidemic methicillin-resistant S. aureus and S. aureus ATCC 29213. Interfering with the synthesis of multiple macromolecules is thought to be one of the antibacterial mechanisms of rhodomyrtone.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 238
Author(s):  
Malgorzata Kloc ◽  
Ahmed Uosef ◽  
Jacek Z. Kubiak ◽  
Rafik M. Ghobrial

Human placenta formation relies on the interaction between fused trophoblast cells of the embryo with uterine endometrium. The fusion between trophoblast cells, first into cytotrophoblast and then into syncytiotrophoblast, is facilitated by the fusogenic protein syncytin. Syncytin derives from an envelope glycoprotein (ENV) of retroviral origin. In exogenous retroviruses, the envelope glycoproteins coded by env genes allow fusion of the viral envelope with the host cell membrane and entry of the virus into a host cell. During mammalian evolution, the env genes have been repeatedly, and independently, captured by various mammalian species to facilitate the formation of the placenta. Such a shift in the function of a gene, or a trait, for a different purpose during evolution is called an exaptation (co-option). We discuss the structure and origin of the placenta, the fusogenic and non-fusogenic functions of syncytin, and the mechanism of cell fusion. We also comment on an alleged danger of the COVID-19 vaccine based on the presupposed similarity between syncytin and the SARS-CoV-2 spike protein.


Sign in / Sign up

Export Citation Format

Share Document