scholarly journals Digitizing abdominal palpation with a pressure measurement and positioning device

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10511
Author(s):  
Jia-Lien Hsu ◽  
Chia-Hui Lee ◽  
Chung-Ho Hsieh

An abdominal physical examination is one of the most important tools in evaluating patients with acute abdominal pain. We focused on palpation, in which assessment is made according to the patient’s response and force feedback. Since palpation is performed manually by the examiner, the uniformity of force and location is difficult to achieve during examinations. We propose an integrated system to quantify palpation pressure and location. A force sensor continuously collects pressure data, while a camera locates the precise position of contact. The system recorded, displayed average and maximum pressure by creating a pressure/time curve for computer-aided diagnosis. Compared with previous work on pressure sensors of quantifying abdominal palpation, our proposed system is the integrated approach to measure palpation force and track the corresponding position at the same time, for further diagnosis. In addition, we only make use of a sensing device and a general web camera, rather than commercial algometry and infrared cameras used in the previous work. Based on our clinical trials, the statistics of palpation pressure values and the corresponding findings are also reported. We performed abdominal palpation with our system for twenty-three healthy participants, including fourteen males and nine females. We applied two grades of force on the abdomen (light and deep) by four-quadrant and nine-region schemes, record the value of pressure and location. In the four-quadrant scheme, the average pressures of abdominal palpation with light and deep force levels were 0.506(N) and 0.552(N), respectively. In the nine-region scheme, the average pressures were 0.496(N) and 0.577(N), respectively. Two episodes of contact dermal reaction were identified. According to our experiment statistics, there is no significant difference in the force level between the four-quadrant and nine-region scheme. Our results have the potential to be used as a reference guide while designing digital abdominal palpation devices.

1968 ◽  
Vol 11 (1) ◽  
pp. 189-193 ◽  
Author(s):  
Lois Joan Sanders

A tongue pressure unit for measurement of lingual strength and patterns of tongue pressure is described. It consists of a force displacement transducer, a single channel, direct writing recording system, and a specially designed tongue pressure disk, head stabilizer, and pressure unit holder. Calibration with known weights indicated an essentially linear and consistent response. An evaluation of subject reliability in which 17 young adults were tested on two occasions revealed no significant difference in maximum pressure exerted during the two test trials. Suggestions for clinical and research use of the instrumentation are noted.


2020 ◽  
Vol 12 (11) ◽  
pp. 4460 ◽  
Author(s):  
Mohammadsoroush Tafazzoli ◽  
Ehsan Mousavi ◽  
Sharareh Kermanshachi

Although the two concepts of lean and sustainable construction have been developed due to different incentives, and they do not pursue the same exact goals, there exists considerable commonality between them. This paper discusses the potentials for integrating the two approaches and their practices and how the resulting synergy from combining the two methods can potentially lead to higher levels of fulfilling the individual goals of each of them. Some limitations and challenges to implementing the integrated approach are also discussed. Based on a comprehensive review of existing papers related to sustainable and lean construction topics, the commonality between the two approaches is discussed and grouped in five categories of (1) cost savings, (2) waste minimization, (3) Jobsite safety improvement, (4) reduced energy consumption, and (5) customers’ satisfaction improvement. The challenges of this integration are similarly identified and discussed in the four main categories of (1) additional initial costs to the project, (2) difficulty of providing specialized expertise, (3) contractors’ unwillingness to adopt the additional requirements, and (4) challenges to establish a high level of teamwork. Industry professionals were then interviewed to rank the elements in each of the two categories of opportunities and challenges. The results of the study highlight how future research can pursue the development of a new Green-Lean approach by investing in the communalities and meeting the challenges of this integration.


2021 ◽  
Vol 9 (1) ◽  
pp. 67
Author(s):  
Hiroshi Takagi ◽  
Fumitaka Furukawa

Uncertainties inherent in gate-opening speeds are rarely studied in dam-break flow experiments due to the laborious experimental procedures required. For the stochastic analysis of these mechanisms, this study involved 290 flow tests performed in a dam-break flume via varying gate speeds between 0.20 and 2.50 m/s; four pressure sensors embedded in the flume bed recorded high-frequency bottom pressures. The obtained data were processed to determine the statistical relationships between gate speed and maximum pressure. The correlations between them were found to be particularly significant at the sensors nearest to the gate (Ch1) and farthest from the gate (Ch4), with a Pearson’s coefficient r of 0.671 and −0.524, respectively. The interquartile range (IQR) suggests that the statistical variability of maximum pressure is the largest at Ch1 and smallest at Ch4. When the gate is opened faster, a higher pressure with greater uncertainty occurs near the gate. However, both the pressure magnitude and the uncertainty decrease as the dam-break flow propagates downstream. The maximum pressure appears within long-period surge-pressure phases; however, instances considered as statistical outliers appear within short and impulsive pressure phases. A few unique phenomena, which could cause significant bottom pressure variability, were also identified through visual analyses using high-speed camera images. For example, an explosive water jet increases the vertical acceleration immediately after the gate is lifted, thereby retarding dam-break flow propagation. Owing to the existence of sidewalls, two edge waves were generated, which behaved similarly to ship wakes, causing a strong horizontal mixture of the water flow.


1997 ◽  
Vol 41 (5) ◽  
pp. 982-986 ◽  
Author(s):  
T P Kanyok ◽  
A D Killian ◽  
K A Rodvold ◽  
L H Danziger

Aminosidine is an older, broad-spectrum aminoglycoside antibiotic that has been shown to be effective in in vitro and animal models against multiple-drug-resistant tuberculosis and the Mycobacterium avium complex. The objective of this randomized, parallel trial was to characterize the single-dose pharmacokinetics of aminosidine sulfate in healthy subjects (eight males, eight females). Sixteen adults (mean [+/- standard deviation] age, 27.6 +/- 5.6 years) were randomly allocated to receive a single, intramuscular aminosidine sulfate injection at a dose of 12 or 15 mg/kg of body weight. Serial plasma and urine samples were collected over a 24-h period and used to determine aminosidine concentrations by high-performance liquid chromatographic assay. A one-compartment model with first-order input, first-order output, and a lag time (Tlag) and with a weighting factor of 1/y2 best described the data. Compartmental and noncompartmental pharmacokinetic parameters were estimated with the microcomputer program WinNonlin. One subject was not included (15-mg/kg group) because of the lack of sampling time data. On average, subjects attained peak concentrations of 22.4 +/- 3.2 microg/ml at 1.34 +/- 0.45 h. All subjects had plasma aminosidine concentrations below 2 microg/ml at 12 h, and all but two subjects (one in each dosing group) had undetectable plasma aminosidine concentrations at 24 h. The dose-adjusted area under the concentration-time curve from 0 h to infinity of aminosidine was identical for the 12- and 15-mg/kg groups (9.29 +/- 1.5 versus 9.29 +/- 2.2 microg x h/ml per mg/kg; P = 0.998). Similarly, no significant differences (P > 0.05) were observed between dosing groups for peak aminosidine concentration in plasma, time to peak aminosidine concentration in plasma, Tlag, apparent clearance, renal clearance, elimination rate constant, and elimination half-life. A significant difference was observed for the volume of distribution (0.35 versus 0.41 liters/kg; P = 0.037) between the 12 and 15 mg/kg dosing groups. Now that comparable pharmacokinetic profiles between dosing groups have been demonstrated, therapeutic equivalency testing via in vitro pharmacokinetic and pharmacodynamic modelling and randomized clinical trials in humans should be conducted.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 243 ◽  
Author(s):  
Yao Yang ◽  
Zhengwei Huang ◽  
Xuan Zhang ◽  
Jinyuan Li ◽  
Ying Huang ◽  
...  

Major depressive disorder (MDD) is one of the main contributors to disability and suicide mortality globally. Paroxetine hydrochloride (PHH) is the most potent antidepressant used for MDD treatment. Due to its reduced side effects PAXIL® CR is a widely-used controlled-release formulation of PHH. However, the complicated double-layer production of PAXIL® CR faces the risk of layer separation. In this study, PHH enteric coating single layer controlled-release tablets (PHH-EC-SLTs) were designed as a simplified substitution of PAXIL® CR through a rational formulation screening. The optimized PHH-EC-SLTs showed similar release behaviors in vitro to PAXIL® CR and the release profiles corresponded to a zero-order release model (R2 = 0.9958). Polymer matrix erosion was the main release mechanism, according to the fitting exponents n > 1 in the Korsmeyer-Pappas model. Crucial pharmacokinetic parameters including peak-reaching time (Tmax), peak concentration (Cmax) and the area under the blood level-time curve (AUC0-48) of PHH-EC-SLTs and PAXIL® CR had no significant difference (p > 0.05) and the relative bioavailability (F = 97.97%) of PHH-EC-SLTs demonstrated their similar pharmacokinetic profiles in vivo. In view of avoiding layer separation risk and simplifying the preparation processing, the self-made PHH-EC-SLTs could be considered as a safe and economic alternative to PAXIL® CR.


2020 ◽  
Vol 53 (383) ◽  
pp. MISC1-MISC3
Author(s):  
Andrea Maugeri

Retinal degenerative diseases are the leading causes of blindness and low vision among working-age and older adults worldwide, with 170 and 130 million individuals suffering from age-related macular degeneration (AMD) and diabetic retinopathy, respectively. Although several studies began to show benefits from dietary interventions against retinal degenerative disease, an integrated approach is needed to understand molecular mechanisms underpinning the protective or risky effect of dietary factors. A specific area of research that elucidates mechanisms involved in gene-diet interaction is the Nutri-epigenomics, the study of the impact of diet on gene expression by modulating epigenetic mechanisms. The present research investigated the role of DNA methylation – one of the most commonly analysed epigenetic mechanisms - in the pathophysiology of retinal degenerative diseases, by exploiting a multiple integrated approach. In vitro studies initially helped us to understand how pathological features of retinal degeneration (e.g. oxidative stress, inflammation and hyperglycaemia) modulated functions of enzymes involved in the methylation of Long Interspersed Nuclear Element 1 (LINE-1) sequences in retinal cells. We also proved that some nutrients (e.g. resveratrol and curcumin) might counteract these effects and restore DNA methylation level in retinal cells under oxidative, inflammatory and high glucose conditions. We further analysed whether LINE-1 methylation level differed between patients with AMD and controls without posterior segment eye diseases. Interestingly, we noted a significant difference between the two groups, with higher LINE-1 methylation level in blood samples from AMD patients. This evidence -albeit promising for biomarker discovery- requires confirmation by further large-size prospective studies taking into account different factors. Our research, in fact, also suggested that the risk of retinal degenerative diseases derives from the combination of genetic risk variants, clinical characteristics, environmental exposures and unhealthy lifestyles, which in turn are interrelated. Thus, it would be interesting to study how the exposome -the totality of exposures individuals experience over the course of life- might induce epigenetic mechanisms able to reduce or increase the risk for retinal degenerative diseases.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8120
Author(s):  
Cederick Landry ◽  
Daniel Loewen ◽  
Harish Rao ◽  
Brendan L. Pinto ◽  
Robert Bahensky ◽  
...  

Objectives: Grip force during hand tool operation is the primary contributor to tendon strain and related wrist injuries, whereas push force is a contributor to shoulder injuries. However, both cannot be directly measured using a single measurement instrument. The objective of this research was to develop and test an algorithm to isolate the grip and push force distributions from in-situ hand-handle pressure measurements and to quantify their distributions among industrial workers using an electric nutrunner. Methods: Experienced automobile assembly line workers used an industrial nutrunner to tighten fasteners at various locations and postures. The pressure applied by the hand on the tool handle was measured dynamically using pressure sensors mounted on the handle. An algorithm was developed to compute the push force applied to the handle of an electric pistol-grip nutrunner based on recorded pressure measurements. An optimization problem was solved to find the contribution of each measured pressure to the actual pushing force of the tool. Finally, the grip force was determined from the difference between the measured pressure and the calculated pushing pressure. Results: The grip force and push force were successfully isolated and there was no correlation between the two forces. The computed grip force increased from low to high fastener locations, whereas the push force significantly increased during overhead fastening. A significant difference across the participants’ computed grip forces was observed. The grip force distribution showed that its contribution to total hand force was larger than other definitions in the literature. Conclusions: The developed algorithm can aid in better understanding the risk of injury associated with different tasks through the notion of grip and push force distribution. This was shown to be important as even workers with considerable power tool experience applied significantly more grip and push force than other participants, all of whom successfully completed each task. Moreover, the fact that both forces were uncorrelated shows the need for extracting them independently.


2018 ◽  
Vol 6 (30) ◽  
pp. 14594-14601 ◽  
Author(s):  
Bing He ◽  
Qichong Zhang ◽  
Lianhui Li ◽  
Juan Sun ◽  
Ping Man ◽  
...  

A self-powering, multifunctional, miniaturized integrated system was designed to achieve real-time health monitoring both statically and dynamically.


Author(s):  
Ester Innocent ◽  
Ismail Almas Athman ◽  
Suzana Augustino

Ticks pose a threat in the infestation of both wild and domestic animals, thereby causing an increase in chances for transmission of diseases. Despite of the wide use of Commiphora species in tick control, no acaricidal activity of Commiphora merkeri. Engl. Exudate have been scientifically assessed. The acaricidal activity of the exudate extract and its Petroleum ether (PE), Dichloromethane (DCM) and Ethyl acetate (ETOAC) fractions were carried out by using the larval immersion test (LIT) and adult immersion test (AIT), against Rhipicephalus appendiculatus and Rhipicephalus averts. The crude extracts of C. merkeri showed 80% and 70% mortality on the LIT bioassay at concentration of 1.0 mg/mL for R. averts and R. appendiculatus, respectively. There was no statistical difference (p≥0.05) in activity of petroleum ether and dichloromethane fractions exhibiting 100% mortality at concentration of 1.0 mg/mL for R. appendiculatus and R. averts, also at 0.8 mg/mL to R. averts species. R. averts was more susceptible that R. appendiculatus showing stable incremental mortality in all concentration levels. In the AIT, no statistical significant difference (p≥0.05) in reduction was observed for crude extract of C. merkeri and petroleum ether fractions by having no surviving R. averts above 0.025 mg/mL after 24 and 72 h. The same trend was observed for R. appendiculatus within 24 h of exposure. However, at lower concentrations the residual effect of treatments on the ticks continued to elicit the effect over time having few or no immediate effect of death after exposure, This was vivid for R. averts within 24 and after 72 h. Follow up of survived engorged adults indicated that, the ticks could lay eggs but the eggs were not viable for hatching. This justifies its uses as an alternative agent in an integrated approach in reducing tick infestation among Pastoralist.


2015 ◽  
Vol 2015 (CICMT) ◽  
pp. 000263-000268
Author(s):  
L. K. Rincon Ardila ◽  
H. Cobas-Gomez ◽  
V.A. Feitosa ◽  
V.T. Kimura ◽  
O. Paiva ◽  
...  

Nanotechnology develops methods and processes for Drug Delivery Systems (DDS) based on the fabrication of polymeric nano/microparticles with encapsulated drug that can be applied for maximize therapeutic activity and minimizes undesirable effects. However, these processes entail several conditions to operate efficiently. They present high sensibility to changes in temperature, flow rate, pressure, and chemical solution composition. An optimal configuration of these parameters is required to guarantee stable particle production. For these reasons, integration of technological devices like sensors, actuators, microfluidic devices and control systems is essential to increase particle production performance. The proposal of this work is to develop an integrated monitored and controlled system using LTCC (Low Temperature Co-Fired Ceramic) microreactors to generate polymeric nano/microparticles for encapsulation of hydrocortisone drug with PCL and Pluronic polymers. The microfluidic integrated system is developed through devices integration, system characterization and control loops configuration, using pressure sensors, syringe and microgear pumps, mixer and vortex LTCC microfluidic reactors, communication drivers, and data processing/control programs. Dynamic Light Scattering, Optical and Scanning Electron Microscopy were employed to measure particle size, polydispersity (PdI) distribution and particle morphology. Preliminary results showed nano/microparticles with encapsulated hydrocortisone drug having a mean diameter size of 528–816 nm and Polidispersity Index (PdI) < 0.5.


Sign in / Sign up

Export Citation Format

Share Document