scholarly journals Evaluation of key miRNAs during early pregnancy in Kazakh horse using RNA sequencing

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10796
Author(s):  
LingLing Liu ◽  
Chao Fang ◽  
YinZe Sun ◽  
WuJun Liu

Background miRNA has an important role in cell differentiation, biological development, and physiology. Milk production is an important quantitative trait in livestock and miRNA plays a role in the amount of milk produced. Methods The role of regulatory miRNAs involved in equine milk production is not fully understood. We constructed two miRNA libraries for Kazakh horse milk production from higher-producing (H group) and lower-producing (L group) individuals, and used RNA-Seq technology to identify the differentially expressed miRNAs between the two milk phenotypes of Kazakh horses. Results A total of 341 known and 333 novel miRNAs were detected from the H and L groups, respectively. Eighty-three differentially expressed miRNAs were identified between the H and L group s, of which 32 were known miRNAs (27 were up-regulated, five were down-regulated) and 51 were novel miRNAs (nine were up-regulated, 42 were down-regulated). A total of 2,415 genes were identified. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that these genes were annotated to mammary gland development, mammary gland morphogenesis, tissue development and PI3K-Akt signaling pathways, insulin signaling pathway and TGF-beta signaling pathway, among others. Five miRNAs (miR-199a-3p, miR143, miR145, miR221, miR486-5p) were identified as affecting horse milk production and these five miRNAs were validated using qRT-PCR. Conclusions We described a methodology for the transcriptome-wide profiling of miRNAs in milk, which may help the design of new intervention strategies to improve the milk yield of Kazakh horses.

2021 ◽  
Author(s):  
Zhiyun Hao ◽  
Yuzhu Luo ◽  
Jiqing Wang ◽  
Jon Hickford ◽  
Huitong Zhou ◽  
...  

In our previous studies, microRNA-432 (miR-432) was found to be one of differentially expressed miRNAs in ovine mammary gland between the two breeds of lactating sheep with different milk production...


Reproduction ◽  
2015 ◽  
Vol 149 (6) ◽  
pp. R279-R290 ◽  
Author(s):  
Michael K G Stewart ◽  
Jamie Simek ◽  
Dale W Laird

Gap junctions formed of connexin subunits link adjacent cells by direct intercellular communication that is essential for normal tissue homeostasis in the mammary gland. The mammary gland undergoes immense remodeling and requires exquisite regulation to control the proliferative, differentiating, and cell death mechanisms regulating gland development and function. The generation of novel genetically modified mice with reduced or ablated connexin function within the mammary gland has advanced our understanding of the role of gap junctions during the complex and dynamic process of mammary gland development. These studies have revealed an important stage-specific role for Cx26 (GJA1) and Cx43 (GJB2), while Cx30 (GJB6) and Cx32 (Gjb1) can be eliminated without compromising the gland. Yet, there remain gaps in our understanding of the role of mammary gland gap junctions.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Ying Wu ◽  
Xinyan Wang ◽  
Li Meng ◽  
Wenqu Li ◽  
Chunyan Li ◽  
...  

As an oncogenic virus, HPV16 can lead to the dysfunction of cervical epithelial cells and contribute to the progression of cervical cancer. Components from the cervical-vaginal fluid (CVF) could be used as the basis for cervical cancer screening. Exosomes are widely present in various body fluids and participate in intercellular communication via its cargos of proteins, mRNAs, and miRNAs. This study was conducted to explore the changes of miRNAs in exosomes isolated form the cervical-vaginal fluid during HPV16 infection and to predict the potential effects of exosomal miRNAs on the development of cervical cancer. CVF was collected from volunteers with or without HPV16 infection. The exosomes in CVF were identified by electron microscopy. Microarray analysis was subjected to find the differentially expressed miRNAs in CVF exosomes. To confirm the results, 16 miRNAs were randomly selected to go through real-time quantitative polymerase chain reaction. In addition, GO and pathway analyses were conducted to reveal potential functions of differentially expressed miRNAs. A total of 2548 conserved miRNAs were identified in the cervical-vaginal fluid-derived exosomes. In response to HPV16 infection, 45 miRNAs are significantly upregulated and 55 miRNAs are significantly downregulated (P<0.05). The GO and KEGG pathway analyses revealed that these differentially expressed miRNAs are tightly associated with cervical cancer tumorigenesis, through interaction with the Notch signaling pathway, TNF signaling pathway, and TGF-β signaling pathway. These results suggest that exosomal miRNAs in CVF are differentially expressed in HPV16 infection patients and HPV16-free volunteers. It provided a novel insight to understand the underlying mechanism of HPV16 infection in regulating cervical cancer progression.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
John Maringa Githaka ◽  
Namita Tripathi ◽  
Raven Kirschenman ◽  
Namrata Patel ◽  
Vrajesh Pandya ◽  
...  

AbstractElucidation of non-canonical protein functions can identify novel tissue homeostasis pathways. Herein, we describe a role for the Bcl-2 family member BAD in postnatal mammary gland morphogenesis. In Bad3SA knock-in mice, where BAD cannot undergo phosphorylation at 3 key serine residues, pubertal gland development is delayed due to aberrant tubulogenesis of the ductal epithelium. Proteomic and RPPA analyses identify that BAD regulates focal adhesions and the mRNA translation repressor, 4E-BP1. These results suggest that BAD modulates localized translation that drives focal adhesion maturation and cell motility. Consistent with this, cells within Bad3SA organoids contain unstable protrusions with decreased compartmentalized mRNA translation and focal adhesions, and exhibit reduced cell migration and tubulogenesis. Critically, protrusion stability is rescued by 4E-BP1 depletion. Together our results confirm an unexpected role of BAD in controlling localized translation and cell migration during mammary gland development.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Emilia Bagnicka ◽  
Ewelina Kawecka-Grochocka ◽  
Klaudia Pawlina-Tyszko ◽  
Magdalena Zalewska ◽  
Aleksandra Kapusta ◽  
...  

AbstractMicroRNAs (miRNAs) are short, non-coding RNAs, 21–23 nucleotides in length which are known to regulate biological processes that greatly impact immune system activity. The aim of the study was to compare the miRNA expression in non-infected (H) mammary gland parenchyma samples with that of glands infected with coagulase-positive staphylococci (CoPS) or coagulase-negative staphylococci (CoNS) using next-generation sequencing. The miRNA profile of the parenchyma was found to change during mastitis, with its profile depending on the type of pathogen. Comparing the CoPS and H groups, 256 known and 260 potentially new miRNAs were identified, including 32 that were differentially expressed (p ≤ 0.05), of which 27 were upregulated and 5 downregulated. Comparing the CoNS and H groups, 242 known and 171 new unique miRNAs were identified: 10 were upregulated (p ≤ 0.05), and 2 downregulated (p ≤ 0.05). In addition, comparing CoPS with H and CoNS with H, 5 Kyoto Encyclopedia of Genes and Genomes pathways were identified; in both comparisons, differentially-expressed miRNAs were associated with the bacterial invasion of epithelial cells and focal adhesion pathways. Four gene ontology terms were identified in each comparison, with 2 being common to both immune system processes and signal transduction. Our results indicate that miRNAs, especially miR-99 and miR-182, play an essential role in the epigenetic regulation of a range of cellular processes, including immunological systems bacterial growth in dendritic cells and disease pathogenesis (miR-99), DNA repair and tumor progression (miR-182).


2003 ◽  
Vol 4 (3) ◽  
pp. 371-382 ◽  
Author(s):  
Karpagam Srinivasan ◽  
Phyllis Strickland ◽  
Ana Valdes ◽  
Grace C Shin ◽  
Lindsay Hinck

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zeng-Hong Wu ◽  
Yun Tang ◽  
Hong Yu ◽  
Hua-Dong Li

AbstractBreast cancer (BC) affects the breast tissue and is the second most common cause of mortalities among women. Ferroptosis is an iron-dependent cell death mode that is characterized by intracellular accumulation of reactive oxygen species (ROS). We constructed a prognostic multigene signature based on ferroptosis-associated differentially expressed genes (DEGs). Moreover, we comprehensively analyzed the role of ferroptosis-associated miRNAs, lncRNAs, and immune responses. A total of 259 ferroptosis-related genes were extracted. KEGG function analysis of these genes revealed that they were mainly enriched in the HIF-1 signaling pathway, NOD-like receptor signaling pathway, central carbon metabolism in cancer, and PPAR signaling pathway. Fifteen differentially expressed genes (ALOX15, ALOX15B, ANO6, BRD4, CISD1, DRD5, FLT3, G6PD, IFNG, NGB, NOS2, PROM2, SLC1A4, SLC38A1, and TP63) were selected as independent prognostic factors for BC patients. Moreover, T cell functions, including the CCR score, immune checkpoint, cytolytic activity, HLA, inflammation promotion, para-inflammation, T cell co-stimulation, T cell co-inhibition, and type II INF responses were significantly different between the low-risk and high-risk groups of the TCGA cohort. Immune checkpoints between the two groups revealed that the expressions of PDCD-1 (PD-1), CTLA4, LAG3, TNFSF4/14, TNFRSF4/8/9/14/18/25, and IDO1/2 among others were significantly different. A total of 1185 ferroptosis-related lncRNAs and 219 ferroptosis-related miRNAs were also included in this study. From the online database, we identified novel ferroptosis-related biomarkers for breast cancer prognosis. The findings of this study provide new insights into the development of new reliable and accurate cancer treatment options.


2020 ◽  
Author(s):  
Lun Wu ◽  
Ying Wei ◽  
Wen-Bo Zhou ◽  
Jiao Zhou ◽  
Li-Hua Yang ◽  
...  

Abstract Background Borax, a boron compound, which is becoming widely recognized for its biological effects, including antioxidant activity, cytotoxicity, and potential therapeutic benefits. However, the specific molecular mechanisms underlying borax-induced anti-tumor effect still remain to be to further elucidated. MicroRNAs (miRNAs) may play key roles in cellular processes including tumor progression, cell apoptosis and cytotoxicity. Thus, this study aimed to investigate, whether miRNAs were involved in the borax-mediated anti-tumor effect using miRNA profiling of a human liver cancer cell line (HepG2) using gene-chip analysis.Methods Total RNA was extracted and purified from HepG2 cells that were treated with 4 mM borax for either 2 or 24 h. The samples underwent microarray analysis using an Agilent Human miRNA Array. Differentially expressed miRNAs were analysed by volcano plot and heatmap, and were validated using real-time fluorescent quantitative PCR (qPCR).ResultsAmong this, 2- or 24-h exposure to borax significantly altered the expression level of miRNAs in HepG2 cells, 4 or 14 were upregulated and 3 were downregulated compared with the control group, respectively (≥2-fold; P<0.05). GO enrichment analysis and KEGG pathway enrichment analysis revealed that target genes of differentially expressed miRNAs in HepG2 cells predominantly participated in MAPK signaling pathway, TGF-beta signaling pathway, NF-kappa B signaling pathway, etc; in 2-h borax treatment group, while Ras signaling pathway, FoxO signaling pathway, Cellular senescence, etc; involved in 24-h treatment group.Conclusions Result indicates that borax-induced anti-tumor effect may be associated with alterations in miRNAs.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10470
Author(s):  
Wanzhen Li ◽  
Shiqing Liu ◽  
Shihong Su ◽  
Yang Chen ◽  
Gengyun Sun

MicroRNA (miRNA, miR) has been reported to be highly implicated in a wide range of biological processes in lung cancer (LC), and identification of differentially expressed miRNAs between normal and LC samples has been widely used in the discovery of prognostic factors for overall survival (OS) and response to therapy. The present study was designed to develop and evaluate a miRNA-based signature with prognostic value for the OS of lung adenocarcinoma (LUAD), a common histologic subtype of LC. In brief, the miRNA expression profiles and clinicopathological factors of 499 LUAD patients were collected from The Cancer Genome Atlas (TCGA) database. Kaplan–Meier (K-M) survival analysis showed significant correlations between differentially expressed miRNAs and LUAD survival outcomes. Afterward, 1,000 resample LUAD training matrices based on the training set was applied to identify the potential prognostic miRNAs. The least absolute shrinkage and selection operator (LASSO) cox regression analysis was used to constructed a six-miRNA based prognostic signature for LUAD patients. Samples with different risk scores displayed distinct OS in K-M analysis, indicating considerable predictive accuracy of this signature in both training and validation sets. Furthermore, time-dependent receiver operating characteristic (ROC) analysis demonstrated the nomogram achieved higher predictive accuracy than any other clinical variables after incorporating the clinical information (age, sex, stage, and recurrence). In the stratification analysis, the prognostic value of this classifier in LUAD patients was validated to be independent of other clinicopathological variables, such as age, gender, tumor recurrence, and early stage. Gene set annotation analyses were also conducted through the Hallmark gene set and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, indicating target genes of the six miRNAs were positively related to various molecular pathways of cancer, such as hallmark UV response, Wnt signaling pathway and mTOR signaling pathway. In addition, fresh cancer tissue samples and matched adjacent tissue samples from 12 LUAD patients were collected to verify the expression of miR-582’s target genes in the model, further revealing the potential relationship between SOX9, RASA1, CEP55, MAP4K4 and LUAD tumorigenesis, and validating the predictive value of the model. Taken together, the present study identified a robust signature for the OS prediction of LUAD patients, which could potentially aid in the individualized selection of therapeutic approaches for LUAD patients.


Sign in / Sign up

Export Citation Format

Share Document