scholarly journals The Sugar Transporter family in wheat (Triticum aestivum. L): genome-wide identification, classification, and expression profiling during stress in seedlings

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11371
Author(s):  
Hongzhan Liu ◽  
Chaoqiong Li ◽  
Lin Qiao ◽  
Lizong Hu ◽  
Xueqin Wang ◽  
...  

The sugar transporter protein (STP) plays a crucial role in regulating plant growth and stress tolerance. We performed genome-wide identification and expression analysis of the STP gene family to investigate the STPSs’ potential roles in the growth of wheat seedlings under stress. Here, a total of 81 TaSTP genes containing the Sugar_tr conserved motif were identified within the wheat genome. Bioinformatic studies including phylogenetic tree, chromosome position, and tandem repeat were performed to analyze the identified genes. The 81 TaSTP genes can be classified into five main groups according to their structural and phylogenetic features, with several subgroups, which were located separately on chromosomes A, B, and D. Moreover, six gene clusters were formed with more than three genes each. The results of three comparative syntenic maps of wheat associated with three representative species suggested that STP genes have strong relationships in monocots. qRT-PCR analysis confirmed that most TaSTP genes displayed different expression profiles after seedlings were subjected to six days of different stress (10% PEG6000, 150 mM NaCl, and their combination, respectively), suggesting that these genes may be involved in regulating plant growth and stress tolerance. In conclusion, 81 TaSTP genes were identified and their expressions changed under stress, indicating TaSTP’s potential roles in wheat growth monosaccharide distribution is regulated.

2018 ◽  
Vol 19 (12) ◽  
pp. 3969 ◽  
Author(s):  
Xiyong Cheng ◽  
Xiaodan Liu ◽  
Weiwei Mao ◽  
Xurui Zhang ◽  
Shulin Chen ◽  
...  

In plants, the HAK (high-affinity K+)/KUP (K+ uptake)/KT (K+ transporter) family represents a large group of potassium transporters that play important roles in plant growth and environmental adaptation. Although HAK/KUP/KT genes have been extensively investigated in many plant species, they remain uncharacterized in wheat, especially those involved in the response to environmental stresses. In this study, 56 wheat HAK/KUP/KT (hereafter called TaHAKs) genes were identified by a genome-wide search using recently released wheat genomic data. Phylogenetic analysis grouped these genes into four clusters (Ι, II, III, IV), containing 22, 19, 7 and 8 genes, respectively. Chromosomal distribution, gene structure, and conserved motif analyses of the 56 TaHAK genes were subsequently performed. In silico RNA-seq data analysis revealed that TaHAKs from clusters II and III are constitutively expressed in various wheat tissues, while most genes from clusters I and IV have very low expression levels in the examined tissues at different developmental stages. qRT-PCR analysis showed that expression levels of TaHAK genes in wheat seedlings were significantly up- or downregulated when seedlings were exposed to K+ deficiency, high salinity, or dehydration. Furthermore, we functionally characterized TaHAK1b-2BL and showed that it facilitates K+ transport in yeast. Collectively, these results provide valuable information for further functional studies of TaHAKs, and contribute to a better understanding of the molecular basis of wheat development and stress tolerance.


Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 696
Author(s):  
Datong Liu ◽  
Jing Sun ◽  
Dongmei Zhu ◽  
Guofeng Lyu ◽  
Chunmei Zhang ◽  
...  

Late embryogenesis-abundant (LEA) genes play important roles in plant growth and development, especially the cellular dehydration tolerance during seed maturation. In order to comprehensively understand the roles of LEA family members in wheat, we carried out a series of analyses based on the latest genome sequence of the bread wheat Chinese Spring. 121 Triticum aestivum L. LEA (TaLEA) genes, classified as 8 groups, were identified and characterized. TaLEA genes are distributed in all chromosomes, most of them with a low number of introns (≤3). Expression profiles showed that most TaLEA genes expressed specifically in grains. By qRT-PCR analysis, we confirmed that 12 genes among them showed high expression levels during late stage grain maturation in two spring wheat cultivars, Yangmai16 and Yangmai15. For most genes, the peak of expression appeared earlier in Yangmai16. Statistical analysis indicated that expression level of 8 genes in Yangmai 16 were significantly higher than Yangmai 15 at 25 days after anthesis. Taken together, our results provide more knowledge for future functional analysis and potential utilization of TaLEA genes in wheat breeding.


2020 ◽  
Author(s):  
Hongwei Zhang ◽  
Xinxia Liang ◽  
Shuo Zhou ◽  
Haibo Wang

Abstract Background: The vernalization, in which the plants must undergo a prolonged winter cold exposure to flower, is mainly controlled by a suppressive MADS-box gene FLC in Arabidopsis. However, different from Arabidopsis, the CCT-domain containing gene VRN2 is the critical vernalization-related suppressor gene in cereals. Based on this apparent diversity of vernalization in different plants, and involvement of VRN2 with vernalization in cereals, we conducted a genome-wide analysis of CCT genes in wheat, and the relationship between vernalization and these genes were also revealed.Results: A genome-wide analysis of the CCT genes in common wheat was performed by employing a hidden Markov model-based method, and 127 sequences, which assigned to 40 clusters, were obtained in three subgenomes. Specially, two of the gene clusters are duplicated, and distinguishingly located near telomere. Furthermore, these sequences were classified into eight groups by a phylogenetic analysis procedure using the UPGMA method, and this taxonomy is concordant to the classification based on CCT interruptions and domain organization which roughly divided the proteins into four divergently related subfamilies. Moreover, the expression of several CCT genes is continually downregulated during and after vernalization, but no continually upregulated CCT genes were revealed, as indicated by transcriptome sequencing and real-time quantitative PCR analysis.Conclusion: This study improves our understanding of the structure and function of CCT genes, suggests many vernalization-related CCT genes, and may guide future investigations on CCT genes and vernalization in wheat.


2021 ◽  
Vol 13 (14) ◽  
pp. 8030
Author(s):  
Shehzad Mehmood ◽  
Amir Abdullah Khan ◽  
Fuchen Shi ◽  
Muhammad Tahir ◽  
Tariq Sultan ◽  
...  

Plant growth-promoting rhizobacteria play a substantial role in plant growth and development under biotic and abiotic stress conditions. However, understanding about the functional role of rhizobacterial strains for wheat growth under salt stress remains largely unknown. Here we investigated the antagonistic bacterial strain Bacillus aryabhattai PM34 inhabiting ACC deaminase and exopolysaccharide producing ability to ameliorate salinity stress in wheat seedlings under in vitro conditions. The strain PM34 was isolated from the potato rhizosphere and screened for different PGP traits comprising nitrogen fixation, potassium, zinc solubilization, indole acetic acid, siderophore, and ammonia production, along with various extracellular enzyme activities. The strain PM34 showed significant tolerance towards both abiotic stresses including salt stress (NaCl 2 M), heavy metal (nickel, 100 ppm, and cadmium, 300 ppm), heat stress (60 °C), and biotic stress through mycelial inhibition of Rhizoctonia solani (43%) and Fusarium solani (41%). The PCR detection of ituC, nifH, and acds genes coding for iturin, nitrogenase, and ACC deaminase enzyme indicated the potential of strain PM34 for plant growth promotion and stress tolerance. In the in vitro experiment, NaCl (2 M) decreased the wheat growth while the inoculation of strain PM34 enhanced the germination% (48%), root length (76%), shoot length (75%), fresh biomass (79%), and dry biomass (87%) over to un-inoculated control under 2M NaCl level. The results of experiments depicted the ability of antagonistic bacterial strain Bacillus aryabhattai PM34 to augment salt stress tolerance when inoculated to wheat plants under saline environment.


2019 ◽  
Author(s):  
Yongbin Wang ◽  
Zhenfeng Jiang ◽  
Zhenxiang Li ◽  
Yuanling Zhao ◽  
Weiwei Tan ◽  
...  

Background. VQ proteins, the plant-specific transcription factors, are involved in the regulation of plant growth, development, and stress responses; however, few articles systematic reported VQ genes in the soybean. Methods. In total, we identified 75 GmVQ genes, which were classified into 7 groups (Ⅰ-Ⅶ). Conserved domain analysis indicated that VQ gene family members all contained the VQ domains. The VQ genes from the same evolutionary branches of soybean shared similar motifs and structures. Promoter analysis revealed cis-elements related to stress responses, phytohormone responses and controlling physical and reproductive growth. Based on the RNA-seq and qRT-PCR analysis, GmVQ genes were expressed in nine tissues suggested their putative function in many aspects of plant growth and development, and response to stresses in Glycine max. Results. The present study provided basic information for further analysis of the biological functions of GmVQ proteins in various development processes.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9551
Author(s):  
Lidong Hao ◽  
Shubing Shi ◽  
Haibin Guo ◽  
Ming Li ◽  
Pan Hu ◽  
...  

The Ethylene-Response Factor (ERF) subfamily transcription factors (TFs) belong to the APETALA2/Ethylene-Responsive Factor (AP2/ERF) superfamily and play a vital role in plant growth and development. However, identification and analysis of the ERF subfamily genes in maize have not yet been performed at genome-wide level. In this study, a total of 76 ERF subfamily TFs were identified and were found to be unevenly distributed on the maize chromosomes. These maize ERF (ZmERF) TFs were classified into six groups, namely groups B1 to B6, based on phylogenetic analysis. Synteny analysis showed that 50, 54, and 58 of the ZmERF genes were orthologous to those in rice, Brachypodium, and Sorghum, respectively. Cis-element analysis showed that elements related to plant growth and development, hormones, and abiotic stress were identified in the promoter region of ZmERF genes. Expression profiles suggested that ZmERF genes might participate in plant development and in response to salinity and drought stresses. Our findings lay a foundation and provide clues for understanding the biological functions of ERF TFs in maize.


2020 ◽  
Author(s):  
Yuxin Pan ◽  
Jinpeng Wang ◽  
Zhenyi Wang ◽  
Hengwei Liu ◽  
Lan Zhang ◽  
...  

Abstract Background: UDP-glucuronate decarboxylase (UXS) is an enzyme in plants and participates in cell wall noncellulose. Previous research suggested that cotton GhUXS gene regulated the conversion of non-cellulosic polysaccharides and modulates their composition in plant cell walls, showing its possible cellular function determining the quality of cotton fibers. Here, we performed evolutionary, phylogenetic, and expressional analysis of UXS genes from cottons and other selected plants. Results: By exploring the sequenced cotton genomes, we identified 10, 10, 18, and 20 UXSs genes in Gossypium raimondii , Gossypium arboretum , Gossypium hirsutum and Gossypium barbadense , and retrieved their homologs from other representative plants, including 5 dicots, 1 monocot, 5 green alga, 1 moss, and 1 lycophyte. Phylogenetic analysis suggested that UXS genes could be divided into four subgroups and members within each subgroup shared similar exon-intron structures, motif and subcellular location. Notably, gene colinearity information indicates 100% constructed trees to have aberrant topology, and helps determine and use corrected phylogeny. In spite of conservative nature of UXS, during the evolution of Gossypium , UXS genes were subjected to significant positive selection on key evolutionary nodes. Expression profiles derived from RNA-seq data showed distinct expression patterns of GhUXS genes in various tissues and different development. Most of GhUXS gene expressed highly at 10, 20 and 25 DPA (day post anthesis) of fibers. Real-time quantitative PCR analysis GhUXS genes expressed highly at 20 DPA or 25 DPA. Conclusions: UXS is relatively conserved in plants and significant positive selection affects cotton UXS evolution. The comparative genome-wide identification and expression profiling would lay an important foundation to understanding the biological functions of UXS gene family in cotton species and other plants.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yuzhu Huo ◽  
Wangdan Xiong ◽  
Kunlong Su ◽  
Yu Li ◽  
Yawen Yang ◽  
...  

The plant-specific transcription factor TCPs play multiple roles in plant growth, development, and stress responses. However, a genome-wide analysis of TCP proteins and their roles in salt stress has not been declared in switchgrass (Panicum virgatum L.). In this study, 42 PvTCP genes (PvTCPs) were identified from the switchgrass genome and 38 members can be anchored to its chromosomes unevenly. Nine PvTCPs were predicted to be microRNA319 (miR319) targets. Furthermore, PvTCPs can be divided into three clades according to the phylogeny and conserved domains. Members in the same clade have the similar gene structure and motif localization. Although all PvTCPs were expressed in tested tissues, their expression profiles were different under normal condition. The specific expression may indicate their different roles in plant growth and development. In addition, approximately 20 cis-acting elements were detected in the promoters of PvTCPs, and 40% were related to stress response. Moreover, the expression profiles of PvTCPs under salt stress were also analyzed and 29 PvTCPs were regulated after NaCl treatment. Taken together, the PvTCP gene family was analyzed at a genome-wide level and their possible functions in salt stress, which lay the basis for further functional analysis of PvTCPs in switchgrass.


Genome ◽  
2017 ◽  
Vol 60 (4) ◽  
pp. 325-336 ◽  
Author(s):  
Qingsong Bai ◽  
Dan Hou ◽  
Long Li ◽  
Zhanchao Cheng ◽  
Wei Ge ◽  
...  

Moso bamboo (Phyllostachys edulis) is well known for its rapid shoot growth. Auxin exerts pleiotropic effects on plant growth. The small auxin-up RNA (SAUR) genes are early auxin-responsive genes involved in plant growth. In total, 38 SAUR genes were identified in P. edulis (PheSAUR). A comprehensive overview of the PheSAUR gene family is presented, including the gene structures, phylogeny, and subcellular location predictions. A transcriptome analysis indicated that 37 (except PheSAUR18) of the PheSAUR genes were expressed during shoot growth process and that the PheSAUR genes were differentially expressed. Furthermore, quantitative real-time PCR analysis indicated that all of the PheSAUR genes could be induced in different tissues of seedlings and that 37 (except PheSAUR41) of the PheSAUR genes were up-regulated after indole-3-acetic acid (IAA) treatment. These results reveal a comprehensive overview of the PheSAUR gene family and may pave the way for deciphering their functions during bamboo development.


2019 ◽  
Author(s):  
Lanjie Zhao ◽  
Youjun Lu ◽  
Wei Chen ◽  
Jinbo Yao ◽  
Yan Li ◽  
...  

Abstract Background: Members of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED ( AHL ) family are involved in various plant biological processes via protein-DNA and protein-protein interaction. However, no the systematic identification and analysis of AHL gene family have been reported in cotton. Results: To investigate the potential functions of AHLs in cotton, genome-wide identification, expressions and structure analysis of the AHL gene family were performed in this study. 48, 51 and 99 AHL genes were identified from the G.raimondii, G.arboreum and G.hirsutum genome, respectively. Phylogenetic analysis revealed that the AHLs in cotton evolved into 2 clades, Clade-A with 4-5 introns and Clade-B with intronless (excluding AHL 20-2). Based on the composition of the AT-hook motif(s) and PPC/DUF 296 domain, AHL proteins were classified into three types (Type-I/-II/-III), with Type-I AHLs forming Clade-B, and the other two types together diversifying in Clade-A. The detection of synteny and collinearity showed that the AHLs expanded with the WGD in cotton, and the sequence structure of AHL20-2 showed the tendency of increasing intron in three different Gossypium spp . The ratios of non-synonymous (Ka) and synonymous (Ks) substitution rates of orthologous gene pairs revealed that the AHL genes of G.hirsutum had undergone through various selection pressures, purifying selection mainly in A-subgenome and positive selection mainly in D-subgenome. Examination of their expression patterns showed most of AHLs of Clade-B expressed predominantly in stem, while those of Clade-A in ovules, suggesting that the AHLs within each clade shared similar expression patterns with each other. qRT-PCR analysis further confirmed that some GhAHLs higher expression in stems and ovules. Conclusion: In this study, 48, 51 and 99 AHL genes were identified from three cotton genomes respectively. AHLs in cotton were classified into two clades by phylogenetic relationship and three type based on the composition of motif and domain. The AHLs expanded with segmental duplication, not tandem duplication. The expression profiles of GhAHLs revealed abundant differences in expression levels in various tissues and at different stages of ovules development. Our study provided significant insights into the potential functions of AHLs in regulating the growth and development in cotton.


Sign in / Sign up

Export Citation Format

Share Document