scholarly journals Expression of thermophilic two-domain laccase from Catenuloplanes japonicus in Escherichia coli and its activity against triarylmethane and azo dyes

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11646
Author(s):  
Liubov Igorevna Trubitsina ◽  
Azat Vadimovich Abdullatypov ◽  
Anna Petrovna Larionova ◽  
Ivan Vasilyevich Trubitsin ◽  
Sergey Valerievich Alferov ◽  
...  

Background Two-domain laccases are copper-containing oxidases found in bacteria in the beginning of 2000ths. Two-domain laccases are known for their thermal stability, wide substrate specificity and, the most important of all, their resistance to so-called «strong inhibitors» of classical fungal laccases (azides, fluorides). Low redox potential was found to be specific for all the two-domain laccases, due to which these enzymes lost the researchers’ interest as potentially applicable for various biotechnological purposes, such as bioremediation. Searching, obtaining and studying the properties of novel two-domain laccases will help to obtain an enzyme with high redox-potential allowing its practical application. Methods A gene encoding two-domain laccase was identified in Catenuloplanes japonicus genome, cloned and expressed in an Echerichia coli strain. The protein was purified to homogeneity by immobilized metal ion affinity chromatography. Its molecular properties were studied using electrophoresis in native and denaturing conditions. Physico-chemical properties, kinetic characteristics, substrate specificity and decolorization ability of laccase towards triphenylmethane dyes were measured spectrophotometrically. Results A novel two-domain recombinant laccase CjSL appeared to be a multimer with a subunit molecular mass of 37 kDa. It oxidized a wide range of phenolic substrates (ferulic acid, caffeic acid, hydroquinone, catechol, etc.) at alkaline pH, while oxidizing of non phenolic substrates (K4[Fe(CN)6], ABTS) was optimal at acidic pH. The UV-visible absorption spectrum of the purified enzyme was specific for all two-domain laccases with peak of absorption at 600 nm and shoulder at 340 nm. The pH optima of CjSL for oxidation of ABTS and 2, 6-DMP substrates were 3.6 and 9.2 respectively. The temperature optimum was 70 °C. The enzyme was most stable in neutral-alkaline conditions. CjSL retained 53% activity after pre-incubation at 90 °C for 60 min. The enzyme retained 26% activity even after 60 min of boiling. The effects of NaF, NaN3, NaCl, EDTA and 1,10-phenanthroline on enzymatic activity were investigated. Only 1,10-phenanthroline reduced laccase activity under both acidic and alkaline conditions. Laccase was able to decolorize triphenylmethane dyes and azo-dyes. ABTS and syringaldehyde were effective mediators for decolorization. The efficacy of dye decolorization depended on pH of the reaction medium.

Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 848 ◽  
Author(s):  
Milan Holeček

L-histidine (HIS) is an essential amino acid with unique roles in proton buffering, metal ion chelation, scavenging of reactive oxygen and nitrogen species, erythropoiesis, and the histaminergic system. Several HIS-rich proteins (e.g., haemoproteins, HIS-rich glycoproteins, histatins, HIS-rich calcium-binding protein, and filaggrin), HIS-containing dipeptides (particularly carnosine), and methyl- and sulphur-containing derivatives of HIS (3-methylhistidine, 1-methylhistidine, and ergothioneine) have specific functions. The unique chemical properties and physiological functions are the basis of the theoretical rationale to suggest HIS supplementation in a wide range of conditions. Several decades of experience have confirmed the effectiveness of HIS as a component of solutions used for organ preservation and myocardial protection in cardiac surgery. Further studies are needed to elucidate the effects of HIS supplementation on neurological disorders, atopic dermatitis, metabolic syndrome, diabetes, uraemic anaemia, ulcers, inflammatory bowel diseases, malignancies, and muscle performance during strenuous exercise. Signs of toxicity, mutagenic activity, and allergic reactions or peptic ulcers have not been reported, although HIS is a histamine precursor. Of concern should be findings of hepatic enlargement and increases in ammonia and glutamine and of decrease in branched-chain amino acids (valine, leucine, and isoleucine) in blood plasma indicating that HIS supplementation is inappropriate in patients with liver disease.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Vachan Singh Meena ◽  
Linga Banoth ◽  
U. C. Banerjee

The present work reports theMetschnikowia koreensis-catalyzed one-pot deracemization of secondary alcohols/1,2-diols and their derivatives with in vivo cofactor regeneration. Reaction is stereoselective and proceeds with sequential oxidation of (R)-secondary alcohols to the corresponding ketones and the reduction of the ketones to (S)-secondary alcohols. Method is applicable to a repertoire of racemic aryl secondary alcohols and 1,2-diols establishing a wide range of substrate specificity ofM. koreensis. This ecofriendly method afforded the product in high yield (88%) and excellent optical purity (>98%ee), minimizing the requirement of multistep reaction and expensive cofactor.


2001 ◽  
Vol 668 ◽  
Author(s):  
Iain P. O'Hare ◽  
Kuvasani Govender ◽  
Paul O'Brien

ABSTRACTNanoporous metal oxide thin films are currently attracting interest for a wide range of electronic applications, including sensors and dye-sensitised photovoltaic cells. However, limited, and poorly controlled, film fabrication routes represent a key factor impeding the development of such devices. To date, device applications have largely been limited to sol-gelfabricated nanocrystalline films of titanium dioxide (TiO2). Such studies have recently been extended to the application of an alternative film fabrication technique, notably that of chemical bath deposition (CBD), for the growth of zinc oxide (ZnO). One interesting feature of CBDfabricated films of ZnO is that, under specific conditions of supersaturation, highly reticulated layers may be obtained, such an observation suggesting that control of morphology is possible. Thick nanoporous films of ZnO have been deposited, upon conducting glass substrates, under both acidic and alkaline conditions, from a solution containing the metal ion, added acid or base, and either a chelating agent, such as ethylenediamine or triethanolamine, or a buffer, hexamethylenetetraamine (HMT). The deposition rate is controlled by systematic adjustment of both temperature and pH, together with the nature, and relative concentration, of the reactants in the solution (chelating agent or metal ion). The material properties of the resulting films have been characterised through the use of a range of techniques, including Scanning Electron Microscopy (SEM), X-Ray Powder Diffraction (XRD) and Energy Dispersive Analysis by XRays (EDAX), and the results are discussed within the context of the suitability of the deposited films for incorporation within nanocrystalline devices.


2021 ◽  
Vol 9 ◽  
Author(s):  
Nurul Kamilah Khairol Anuar ◽  
Huey Ling Tan ◽  
Ying Pei Lim ◽  
Mohamad Sufian So’aib ◽  
Noor Fitrah Abu Bakar

Carbon-Dots (C-Dots) have drawn much attention in recent years owing to their remarkable properties such as high biocompatibility, low toxicity, nano-scale size, and ease of modification with good tuneable photoluminescence performance. These unique properties have led C-Dots to become a promising platform for bioimaging, metal ion sensing and an antibacterial agent. C-Dots can be prepared using the top-down and bottom-up approaches, in which the latter method is commonly used for large scale and low-cost synthesis. C-Dots can be synthesized using sustainable raw materials or green biomass since it is environmentally friendly, in-expensive and most importantly, promotes the minimization of waste production. However, using biomass waste to produce high-quality C-Dots is still a matter of concern waiting for resolution, and this will be the main focus of this review. Fundamental understanding of C-Dots such as structure analysis, physical and chemical properties of C-Dots, various synthesis methodology and type of raw materials used are also discussed and correlated comprehensively. Additionally, factors affecting the bandgap of the C-Dots and the strategies to overcome these shortcomings are also covered. Moreover, formation mechanism of C-Dots focusing on the hydrothermal method, option and challenges to scale up the C-Dots production are explored. It is expected that the great potential of producing C-Dots from agricultural waste a key benefit in view of their versatility in a wide range of applications.


2019 ◽  
Author(s):  
Mariano Sánchez-Castellanos ◽  
Martha M. Flores-Leonar ◽  
Zaahel Mata-Pinzón ◽  
Humberto G. Laguna ◽  
Karl García-Ruiz ◽  
...  

Compounds from the 2,2’-bipyridine molecular family were investigated for use as redox-active materials in organic flow batteries. For 156 2,2’-bipyridine derivatives reported in the academic literature, we calculated the redox potential, the pKa for the first protonation reaction, and the solubility in aqueous solutions. Using experimental data on a small subset of derivatives, we were able to calibrate our calculations. We find that functionalization with electron-withdrawing groups leads to an increase of the redox potential and to an increase of the molecular acidity (as expressed in a reduction of the pKa value for the first protonation step). Furthermore, calculations of solubility in water indicate that some of the studied derivatives have adequate solubility for flow battery applications. Based on an analysis of the physico-chemical properties of the 156 studied compounds, we down-select five molecules with carbonyl- and nitro-based functional groups, whose parameters are especially promising for potential application as negative redox-active material inorganic flow batteries.


2019 ◽  
Author(s):  
Mariano Sánchez-Castellanos ◽  
Martha M. Flores-Leonar ◽  
Zaahel Mata-Pinzón ◽  
Humberto G. Laguna ◽  
Karl García-Ruiz ◽  
...  

Compounds from the 2,2’-bipyridine molecular family were investigated for use as redox-active materials in organic flow batteries. For 156 2,2’-bipyridine derivatives reported in the academic literature, we calculated the redox potential, the pKa for the first protonation reaction, and the solubility in aqueous solutions. Using experimental data on a small subset of derivatives, we were able to calibrate our calculations. We find that functionalization with electron-withdrawing groups leads to an increase of the redox potential and to an increase of the molecular acidity (as expressed in a reduction of the pKa value for the first protonation step). Furthermore, calculations of solubility in water indicate that some of the studied derivatives have adequate solubility for flow battery applications. Based on an analysis of the physico-chemical properties of the 156 studied compounds, we down-select five molecules with carbonyl- and nitro-based functional groups, whose parameters are especially promising for potential application as negative redox-active material inorganic flow batteries.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1786
Author(s):  
Carla Queirós ◽  
Chen Sun ◽  
Ana M. G. Silva ◽  
Baltazar de Castro ◽  
Juan Cabanillas-Gonzalez ◽  
...  

The development of straightforward reproducible methods for the preparation of new photoluminescent coordination polymers (CPs) is an important goal in luminescence and chemical sensing fields. Isophthalic acid derivatives have been reported for a wide range of applications, and in addition to their relatively low cost, have encouraged its use in the preparation of novel lanthanide-based coordination polymers (LnCPs). Considering that the photoluminescent properties of these CPs are highly dependent on the existence of water molecules in the crystal structure, our research efforts are now focused on the preparation of CP with the lowest water content possible, while considering a green chemistry approach. One- and two-dimensional (1D and 2D) LnCPs were prepared from 5-aminoisophthalic acid and Sm3+/Tb3+ using hydrothermal and/or microwave-assisted synthesis. The unprecedented LnCPs were characterized by single-crystal X-ray diffraction (SCRXD), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM), and their photoluminescence (PL) properties were studied in the solid state, at room temperature, using the CPs as powders and encapsulated in poly(methyl methacrylate (PMMA) films, envisaging the potential preparation of devices for sensing. The materials revealed interesting PL properties that depend on the dimensionality, metal ion, co-ligand used and water content.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1891
Author(s):  
Antonio Reina ◽  
Trung Dang-Bao ◽  
Itzel Guerrero-Ríos ◽  
Montserrat Gómez

Metal nanoparticles have been deeply studied in the last few decades due to their attractive physical and chemical properties, finding a wide range of applications in several fields. Among them, well-defined nano-structures can combine the main advantages of heterogeneous and homogenous catalysts. Especially, catalyzed multi-step processes for the production of added-value chemicals represent straightforward synthetic methodologies, including tandem and sequential reactions that avoid the purification of intermediate compounds. In particular, palladium- and copper-based nanocatalysts are often applied, becoming a current strategy in the sustainable synthesis of fine chemicals. The rational tailoring of nanosized materials involving both those immobilized on solid supports and liquid phases and their applications in organic synthesis are herein reviewed.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3133
Author(s):  
Yuling Meng ◽  
Fei Zhao ◽  
Xianwei Jin ◽  
Yun Feng ◽  
Gangzheng Sun ◽  
...  

Fracturing fluids are being increasingly used for viscosity development and proppant transport during hydraulic fracturing operations. Furthermore, the breaker is an important additive in fracturing fluid to extensively degrade the polymer mass after fracturing operations, thereby maximizing fracture conductivity and minimizing residual damaging materials. In this study, the efficacy of different enzyme breakers was examined in alkaline and medium-temperature reservoirs. The parameters considered were the effect of the breaker on shear resistance performance and sand-suspending performance of the fracturing fluid, its damage to the reservoir after gel breaking, and its gel-breaking efficiency. The experimental results verified that mannanase II is an enzyme breaker with excellent gel-breaking performance at medium temperatures and alkaline conditions. In addition, mannanase II did not adversely affect the shear resistance performance and sand-suspending performance of the fracturing fluid during hydraulic fracturing. For the same gel-breaking result, the concentration of mannanase II used was only one fifth of other enzyme breakers (e.g., mannanase I, galactosidase, and amylase). Moreover, the amount of residue and the particle size of the residues generated were also significantly lower than those of the ammonium persulfate breaker. Finally, we also examined the viscosity-reducing capability of mannanase II under a wide range of temperatures (104–158 °F) and pH values (7–8.5) to recommend its best-use concentrations under different fracturing conditions. The mannanase has potential for applications in low-permeability oilfield development and to maximize long-term productivity from unconventional oilwells.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajinkya More ◽  
Thomas Elder ◽  
Zhihua Jiang

Abstract This review discusses the main factors that govern the oxidation processes of lignins into aromatic aldehydes and acids using hydrogen peroxide. Aromatic aldehydes and acids are produced in the oxidative degradation of lignin whereas mono and dicarboxylic acids are the main products. The stability of hydrogen peroxide under the reaction conditions is an important factor that needs to be addressed for selectively improving the yield of aromatic aldehydes. Hydrogen peroxide in the presence of heavy metal ions readily decomposes, leading to minor degradation of lignin. This degradation results in quinones which are highly reactive towards peroxide. Under these reaction conditions, the pH of the reaction medium defines the reaction mechanism and the product distribution. Under acidic conditions, hydrogen peroxide reacts electrophilically with electron rich aromatic and olefinic structures at comparatively higher temperatures. In contrast, under alkaline conditions it reacts nucleophilically with electron deficient carbonyl and conjugated carbonyl structures in lignin. The reaction pattern in the oxidation of lignin usually involves cleavage of the aromatic ring, the aliphatic side chain or other linkages which will be discussed in this review.


Sign in / Sign up

Export Citation Format

Share Document