scholarly journals Discordance in maternal and paternal genetic markers in lesser long-nosed bat Leptonycteris yerbabuenae, a migratory bat: recent expansion to the North and male phylopatry

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12168
Author(s):  
Roberto-Emiliano Trejo-Salazar ◽  
Gabriela Castellanos-Morales ◽  
DulceCarolina Hernández-Rosales ◽  
Niza Gámez ◽  
Jaime Gasca-Pineda ◽  
...  

Leptonycteris yerbabuenae, the lesser long-nosed bat is an abundant migratory nectar-feeding bat found in most of Mexico, and in some areas of northern Central America and small sections of southwestern USA. We analyzed the distribution of the maternal and paternal lineages of this species with phylogeographic methods based on two mitochondrial markers, Cyt-b and D-loop, and a marker located in the Y chromosome, DBY. We obtained tissue samples from 220 individuals from 23 localities. Levels of genetic diversity (haplotype diversity, Hd) were high (Cyt-b = 0.757; D-loop = 0.8082; DBY = 0.9137). No clear patterns of population genetic structure were found for mitochondrial markers, while male genetic differentiation suggested the presence of two lineages: one from Mexican Pacific coast states and another from central-southern Mexico; in accordance to strong male philopatry and higher female migration. We used genealogical reconstructions based on Bayesian tools to calculate divergence times, and to test coalescent models to explain changes in L. yerbabuenae historical demography. Our results show that recent demographic changes were consistent with global climatic changes (∼130,000 kyr ago for Cyt-b and ∼160,000 kyr for D-loop) and divergence times dated from molecular genealogies exhibited older divergence times, Cyt-b (4.03 mya), D-loop (10.26 mya) and DBY (12.23 mya). Accordingly, the female lineage underwent demographic expansion associated to Pleistocene climate change, whereas the male lineage remained constant.

2022 ◽  
Vol 10 (1) ◽  
pp. 186
Author(s):  
Alejandro Flores-Alanis ◽  
Lilia González-Cerón ◽  
Frida Santillán-Valenzuela ◽  
Cecilia Ximenez ◽  
Marco A. Sandoval-Bautista ◽  
...  

For 20 years, Plasmodium vivax has been the only prevalent malaria species in Mexico, and cases have declined significantly and continuously. Spatiotemporal genetic studies can be helpful for understanding parasite dynamics and developing strategies to weaken malaria transmission, thus facilitating the elimination of the parasite. The aim of the current contribution was to analyze P. vivax-infected blood samples from patients in southern Mexico during the control (1993–2007) and pre-elimination phases (2008–2011). Nucleotide and haplotype changes in the pvmsp142 fragment were evaluated over time. The majority of multiple genotype infections occurred in the 1990s, when the 198 single nucleotide sequences exhibited 57 segregating sites, 64 mutations, and 17 haplotypes. Nucleotide and genetic diversity parameters showed subtle fluctuations from across time, in contrast to the reduced haplotype diversity and the increase in the R2 index and Tajima’s D value from 2008 to 2011. The haplotype network consisted of four haplogroups, the geographical distribution of which varied slightly over time. Haplogroup-specific B-cell epitopes were predicted. Since only high-frequency and divergent haplotypes persisted, there was a contraction of the parasite population. Given that 84% of haplotypes were exclusive to Mesoamerica, P. vivax flow is likely circumscribed to this region, representing important information for parasite surveillance.


2020 ◽  
Vol 223 (18) ◽  
pp. jeb215053 ◽  
Author(s):  
Michael H. Walter ◽  
Aaron Verdong ◽  
Vanessa Olmos ◽  
Christina C. Weiss ◽  
Lisa-Ruth Vial ◽  
...  

ABSTRACTEvery day nectar-feeding animals face an energetic challenge during foraging: they must locate and select flowers that provide nectar with adequate amounts of sugar to cover their very high energy needs. To understand this decision-making process, it is crucial to know how accurately sugar concentration differences can be discriminated. In a controlled laboratory setting, we offered the nectar-specialist bat Leptonycteris yerbabuenae the choice between different sugar solutions covering the entire concentration range of bat-pollinated plants (3–33%). When feeding on solutions below 10% sugar concentration, L. yerbabuenae were unable to cover their energetic demands because of physiological constraints. Their ability to discriminate sugar concentrations was better than that of any other nectar-feeding animal studied to date. At sugar concentrations below 15%, L. yerbabuenae can discriminate solutions differing by only 0.5%. The bats may utilize this fine-tuned ability to select nectar from flowers with reward qualities that provide them with the necessary amount of energy to survive.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 1056 ◽  
Author(s):  
Indira G.C. Vonhögen ◽  
Hamid el Azzouzi ◽  
Servé Olieslagers ◽  
Aliaksei Vasilevich ◽  
Jan de Boer ◽  
...  

The prevalence of metabolic syndrome (MetS) and obesity is an alarming health issue worldwide. Obesity is characterized by an excessive accumulation of white adipose tissue (WAT), and it is associated with diminished brown adipose tissue (BAT) activity. Twist1 acts as a negative feedback regulator of BAT metabolism. Therefore, targeting Twist1 could become a strategy for obesity and metabolic disease. Here, we have identified miR-337-3p as an upstream regulator of Twist1. Increased miR-337-3p expression paralleled decreased expression of TWIST1 in BAT compared to WAT. Overexpression of miR-337-3p in brown pre-adipocytes provoked a reduction in Twist1 expression that was accompanied by increased expression of brown/mitochondrial markers. Luciferase assays confirmed an interaction between the miR-337 seed sequence and Twist1 3′UTR. The inverse relationship between the expression of TWIST1 and miR-337 was finally validated in adipose tissue samples from non-MetS and MetS subjects that demonstrated a dysregulation of the miR-337-Twist1 molecular axis in MetS. The present study demonstrates that adipocyte miR-337-3p suppresses Twist1 repression and enhances the browning of adipocytes.


1997 ◽  
Vol 34 (6) ◽  
pp. 589-593 ◽  
Author(s):  
Jose Alejandro Martinez-Ibarra ◽  
Mario H. Rodriguez ◽  
Juan I. Arredondo-Jimenez ◽  
Boaz Yuval

Author(s):  
Daria Sanna ◽  
Paolo Merella ◽  
Tiziana Lai ◽  
Sarra Farjallah ◽  
Paolo Francalacci ◽  
...  

The bluespotted cornetfish (Fistularia commersonii) is an Indo-Pacific species that in the last ten years colonized a large part of the Mediterranean basin. The aim of this study was to sequence some portions of the mitochondrial DNA (D-loop II, 16S, 12S and Cyt b) of this fish from different localities of the Mediterranean Sea, in order to evaluate the level of its genetic variability in this area. The genetic analysis performed on specimens from seven localities of Sardinia, Tunisia and Libya revealed the presence of at least five mitochondrial lineages. The results obtained, compared with previous studies, indicate that the use of a sufficient number of mitochondrial regions may allow a more accurate estimate of genetic variability in lessepsian invasions.


PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0163492 ◽  
Author(s):  
Tania P. Gonzalez-Terrazas ◽  
Jens C. Koblitz ◽  
Theodore H. Fleming ◽  
Rodrigo A. Medellín ◽  
Elisabeth K. V. Kalko ◽  
...  

2012 ◽  
Vol 33 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Cinthya Alejandra Ureña-Aranda ◽  
Alejandro Espinosa de los Monteros

Gopherus flavomarginatus (Testudinidae) is endemic to a series of discontinuous, isolated basins collectively known as the Bolson de Mapimí in the Chihuahuan Desert. Its numbers declined after catastrophic levels of exploitation during the mid-20th century. However currently, the Bolson Tortoise appears to be on a path to recovery owing to intensive, sustained conservation efforts. We sequenced an 842-bp-long fragment of the D-loop from 76 individuals distributed throughout the species’ range. The results revealed only two haplotypes. An AMOVA showed that 95% of the variance occurred among populations, whereas the remaining 5% was explained by genetic differences within populations. Tectonic processes together with ecological transformation during the Pleistocene and Holocene may be responsible for the reduction in this species’ genetic variation. A bottleneck during which a significant percentage of the haplotype diversity was lost would result in genetic homogeneity. Although there is demographic growth, the lack of genetic diversity is indicative of the potential crisis that the Bolson Tortoise is facing, and awareness must be brought to this situation.


2016 ◽  
pp. 23-29
Author(s):  
Noémi Soós ◽  
Szilvia Kusza

The brown hare being an important game species which is widespread across the European continent has been in focus of many population genetic studies. However only a few comprising researches can be found on the diversity of Central-European populations. The aim of our large scale long term ongoing study is to fill this gap of information on the species by describing the genetic history and structure of the brown hare populations of the area using both mitochondrial DNA markers and genomic skin and hair colour regulating genes. This article gives forth a part of our results concerning the mitochondrial DNA diversity of Hungarian brown hares based on amplification of a 512 bp long D-loop sequence. N=39 tissue or hair samples have been collected from 15 sampling sites on the Hungarian Great Plain. We have described a high level of haplotype diversity (Hd=0.879±0.044) based on a 410 bp alignment of our sequences. We have found 17 haplotypes within our sample set with the nucleotid diversity of π=0.01167±0.0022. Our ongoing research shows high genetic diversity for the brown hare in the studied region and a second alignment with 156 sequences downloaded from GenBank indicates a geographic pattern of haplotypes among the studied populations though these results need confirmation by our further analyses.


2018 ◽  
Vol 20 (1) ◽  
pp. 17-22
Author(s):  
TETY HARTATIK ◽  
DWI NUR HAPPY HARIYONO ◽  
YUDI ADINATA

Hartatik T, Hariyono DNH, Adinata Y. 2019. Genetic diversity and phylogenetic analysis of two Indonesian local cattle breeds based on cytochrome b gene sequences. Biodiversitas 20: 17-22. Genetic diversity and phylogenetic relationships of two Indonesian local cattle breeds (Pasundan and Pacitan cattle) were investigated using mitochondrial DNA (mtDNA) cytochrome b (cyt b) gene analysis. Partial sequences of cyt b gene, 404 bp in length, were determined for 21 individuals from the two breeds. Genetic diversity of the breeds was assessed based on the number of polymorphic sites, number of haplotypes, haplotype diversity, nucleotide diversity and average number of differences. In addition, a neighbour-joining (NJ) haplotype tree was constructed based on Kimura’s two-parameter model. Among the two breeds, haplotype and nucleotide diversity of Pacitan cattle were the highest with values of 0.3778 and 0.00099, respectively. In contrast, Pasundan cattle had the lowest value for haplotype (0.1818) and nucleotide (0.00045) diversity. Four haplotypes (Hap_16, Hap_17, Hap_18 and Hap_19) were found across the two breeds and around 85.71% of investigated individuals were classified as Hap_16. Phylogenetic analysis with the inclusion of the cyt b sequences from 39 cattle breeds from Genbank database, showed that Indonesian cattle made a separated lineage together with Bos javanicus, B. bison, and B. bonasus. Pasundan and Pacitan cattle were considered from the same lineage based on haplotype distribution as well as phylogenetic analysis. This study may help the future researchers and livestock breeders for designing a breeding program based on a better understanding of the genetic diversity and history of local breeds.


2021 ◽  
Vol 17 (2) ◽  
pp. 105-114
Author(s):  
Anik Budhi Dharmayanthi ◽  
Achmad Muchsinin ◽  
Afriana Pulungan ◽  
Moch Syamsul Arifin Zein

Pelicans (Pelecanus conspicillatus) is one of the wild species that have a widely distribution. This bird has been successfully bred in Ragunan Zoo, Jakarta. The indicator of inbreeding in the captive population is shown by the decrease of nucleotide diversity and number of haplotypes. The result of genetic diversity analysis using D-loop fragment sequences showed low genetic diversity with nucleotide diversity (p) = 0.00064 ± 0.00010 and haplotype diversity (Hd) = 0.532 ± 0.061 in Pelecanus conspicillatus populations in the Ragunan Zoo. However, negative Fu's Fs value (-3,246) indicates population expansion. We found that there were seven haplotypes in bird populations in the captivity: haplotype 1, 2 and 3 consist of 43 individuals (65.15%), five individuals (7.57%), and 14 individuals (21.21%), respectively. For each haplotype 4, 5, 6 and 7 is only represented by one individual of Pelecanus conspicillatus (1.51%). The sex ratio of males to females is 1: 8.86 with four males identified as haplotype 1, and one male on haplotypes 3, 5 and 7, respectively. Genetic diversity data of the population is an important way for designing long-term plans and goals in efforts to maintain genetic diversity of the Pelecanus conspicillatus population in captivity.


Sign in / Sign up

Export Citation Format

Share Document