scholarly journals Dinophiliformia early neurogenesis suggests the evolution of conservative neural structures across the Annelida phylogenetic tree

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12386
Author(s):  
Elizaveta Fofanova ◽  
Tatiana D. Mayorova ◽  
Elena E. Voronezhskaya

Despite the increasing data concerning the structure of the adult nervous system in various Lophotrochozoa groups, the early events during the neurogenesis of rare and unique groups need clarification. Annelida are a diverse clade of Lophotrochozoa, and their representatives demonstrate a variety of body plans, lifestyles, and life cycles. Comparative data about the early development are available for Errantia, Sedentaria, Sipuncula, and Palaeoannelida; however, our knowledge of Dinophiliformia is currently scarce. Representatives of Dinophiliformia are small interstitial worms combining unique morphological features of different Lophotrochozoan taxa and expressing paedomorphic traits. We describe in detail the early neurogenesis of two related species: Dimorphilus gyrociliatus and Dinophilus vorticoides, from the appearance of first nerve cells until the formation of an adult body plan. In both species, the first cells were detected at the anterior and posterior regions at the early trochophore stage and demonstrated positive reactions with pan-neuronal marker anti-acetylated tubulin only. Long fibers of early cells grow towards each other and form longitudinal bundles along which differentiating neurons later appear and send their processes. We propose that these early cells serve as pioneer neurons, forming a layout of the adult nervous system. The early anterior cell of D. vorticoides is transient and present during the short embryonic period, while early anterior and posterior cells in D. gyrociliatus are maintained throughout the whole lifespan of the species. During development, the growing processes of early cells form compact brain neuropile, paired ventral and lateral longitudinal bundles; unpaired medial longitudinal bundle; and commissures in the ventral hyposphere. Specific 5-HT- and FMRFa-immunopositive neurons differentiate adjacent to the ventral bundles and brain neuropile in the middle trochophore and late trochophore stages, i.e. after the main structures of the nervous system have already been established. Processes of 5-HT- and FMRFa-positive cells constitute a small proportion of the tubulin-immunopositive brain neuropile, ventral cords, and commissures in all developmental stages. No 5-HT- and FMRFa-positive cells similar to apical sensory cells of other Lophotrochozoa were detected. We conclude that: (i) like in Errantia and Sedentaria, Dinophiliformia neurogenesis starts from the peripheral cells, whose processes prefigure the forming adult nervous system, (ii) Dinophiliformia early cells are negative to 5-HT and FMRFa antibodies like Sedentaria pioneer cells.

2021 ◽  
Author(s):  
Elizaveta Fofanova ◽  
Tatiana Mayorova ◽  
Elena Voronezhskaya

Despite the increasing data concerning the structure of the adult nervous system in various Lophotrochozoa groups, the early events during the neurogenesis of rare and unique groups need clarification. Annelida are a diverse clade of Lophotrochozoa, and their representatives demonstrate a variety of body plans, lifestyles, and life cycles. Comparative data about the early development are available for Errantia, Sedentaria, Sipuncula and Palaeoannelida; however, our knowledge of Dinophiliformia is currently scarce. Representatives of Dinophiliformia are small interstitial worms combining unique morphological features of different Lophotrochozoan taxa and expressing paedomorphic traits. We describe in detail the early neurogenesis of two related species: Dimorphilus gyrociliatus and Dinophilus vorticoides, from the appearance of first nerve cells until the formation of an adult body plan. In both species, the first cells were detected at the anterior and posterior regions at the early trochophore stage and demonstrated positive reactions with pan-neuronal marker anti-acetylated tubulin only. Long fibers of early cells grow towards each other and form longitudinal bundles along which differentiating neurons later appear and send their processes. We propose that these early cells serve as pioneer neurons, forming a layout of the adult nervous system. The early anterior cell of D. vorticoides is transient and present during the short embryonic period, while early anterior and posterior cells in D. gyrociliatus are maintained throughout the whole lifespan of the species. During development, the growing processes of early cells form compact brain neuropile, paired ventral and lateral longitudinal bundles; unpaired medial longitudinal bundle; and commissures in the ventral hyposphere. Specific 5-HT- and FMRFa-immunopositive neurons differentiate adjacent to the ventral bundles and brain neuropile in the middle trochophore and late trochophore stages, i.e. after the main structures of the nervous system have already been established. Processes of 5-HT- and FMRFa-positive cells constitute a small proportion of the tubulin-immunopositive brain neuropile, ventral cords, and commissures in all developmental stages. No 5-HT- and FMRFa-positive cells similar to apical sensory cells of other Lophotrochozoa were detected. We conclude that: (i) like in Errantia and Sedentaria, Dinophiliformia neurogenesis starts from the peripheral cells, whose processes prefigure the forming adult nervous system, (ii) Dinophiliformia early cells are negative to 5-HT and FMRFa antibodies like Sedentaria pioneer cells.


2020 ◽  
Author(s):  
Elizaveta Fofanova ◽  
Tatiana Mayorova ◽  
Elena Voronezhskaya

Abstract BackgroundThe structure and development of the nervous system in Lophotrochozoa species is of the most important questions for comparative neurobiology. During the last decade the number of comprehensive studies on the development of serotonergic and FMRFamidergic systems has been skyrocketing. However, the detailed research of the earliest events of Polychaeta neurogenesis is still sparce. Polychaeta is a huge taxon within Lophotrochozoa. Its representatives are widely used as model systems in developmental and physiological investigations. Dinophilidae is a unique Polychaeta group. Its representatives combine morphological traits of different lophotrochozoan taxa. Moreover, adult dinophilids demonstrate morphological similarity to a trochophore larva. This similarity may be associated with either archaic origin of this group or neoteny. The main goal of our study is to provide a detailed description of the earliest events in Dinophilus neurogenesis. These data might improve our understanding of Polychaeta development and evolution.ResultsWe have studied the earliest events in nervous system development in two relative species D. gyrociliatus and D. taeniatus using immunochemical labelling of serotonin, FMRF-amide related peptides, and acetylated tubulin. We used external ciliation as marker for staging. Both species go through the same developmental stages: prototroch, ventral ciliary field and ciliary bands. In both species the first neurons differenciate revealed by anti alpha-acetylated tubulin antibodies only and show no reaction with 5-HT or FMRFa antibodies. These neurons located at the anterior and posterior parts of the embryo in both species. In D. taeniatus embryons the anterior cell is transient and disappear just after head neuropil is constructed. On the contrary, in D. gyrociliatus embryos the anterior cell is not transient and remains at the same position during the whole life span of the specimen. Caudal cell is present during the whole embryogenesis in both species. Neurites of these early neurons surround the stomadeum and constitute anlagen of paired ventro-lateral longitudinal bundles. During the development the number of neurites increases and they form compact head neuropil, paired ventro-lateral and lateral longitudinal bundles, unpaired medial longitudinal bundle and transverse commissures in ventral hyposphere. Serotonin- and FMRFamide-immunoreactive neurons differentiate adjacent to ventro-lateral bundles and head neuropil, respectively, after the establishment of main structures of the nervous system at the ventral ciliary field and ciliary bands stages. Processes of serotonin-, FMRFamide- immunopositive neurons constitute the small portion of tubulin immunopositive neuropil at all described stages.ConclusionsWe announce a detailed data on the earliest events in D. gyrociliatus and D. taeniatus neurodevelopment based on anti-acetylated tubulin, serotonin, and FMRFamide-like immuno labeling. The first nerve elements demonstrate no 5-HT-IR and no FMRFa-IR, which differs from the most Polychaetes and even Lophotrochozoans, investigated so far. Moreover, these animals do not have a typical apical organ (or perhaps do not have it at all) and the pioneer neurons of D.gyrociliatus are also peculiar in that they join the definitive nervous system unlike other lophotrochozoans where pioneer nerons are transient. Thus, Dinophilus neurogenesis demonstrates a variation of common scheme. The reported study was funded by RFBR, project number 19-3460040.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 91
Author(s):  
Verena Schultz ◽  
Stephanie L. Cumberworth ◽  
Quan Gu ◽  
Natasha Johnson ◽  
Claire L. Donald ◽  
...  

Understanding how Zika virus (Flaviviridae; ZIKV) affects neural cells is paramount in comprehending pathologies associated with infection. Whilst the effects of ZIKV in neural development are well documented, impact on the adult nervous system remains obscure. Here, we investigated the effects of ZIKV infection in established mature myelinated central nervous system (CNS) cultures. Infection incurred damage to myelinated fibers, with ZIKV-positive cells appearing when myelin damage was first detected as well as axonal pathology, suggesting the latter was a consequence of oligodendroglia infection. Transcriptome analysis revealed host factors that were upregulated during ZIKV infection. One such factor, CCL5, was validated in vitro as inhibiting myelination. Transferred UV-inactivated media from infected cultures did not damage myelin and axons, suggesting that viral replication is necessary to induce the observed effects. These data show that ZIKV infection affects CNS cells even after myelination—which is critical for saltatory conduction and neuronal function—has taken place. Understanding the targets of this virus across developmental stages including the mature CNS, and the subsequent effects of infection of cell types, is necessary to understand effective time frames for therapeutic intervention.


2005 ◽  
Vol 37 (5) ◽  
pp. 373-382 ◽  
Author(s):  
William B. SANDERS

The utility of plastic cover slips as a substratum for in situ study of lichen developmental stages is further explored in a neotropical foliicolous lichen community and in a European temperate corticolous community. Twenty-one months after placement in the tropical forest, the cover slips bore foliicolous lichen thalli with several species producing characteristic ascocarps and ascospores, indicating the suitability of the substratum for completion of the life cycle of these lichens. On cover slips placed within the temperate corticolous community, lichen propagules anchored to the substratum with relatively short attachment hyphae but did not develop further within the one year observation period. Intimately intermixed microbial communities of short-celled, mainly pigmented fungi and chlorophyte algae developed upon the transparent substratum. Among the algae, Trebouxia cells, often in groups showing cell division and without associated lichenizing hyphae, were commonly observed. The potential significance of the free-living populations in the life cycle of Trebouxia and in those of Trebouxia-associated lichen fungi is discussed.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Vedavathi Madhu ◽  
Abhijit S. Dighe ◽  
Quanjun Cui ◽  
D. Nicole Deal

Damage to the nervous system can cause devastating diseases or musculoskeletal dysfunctions and transplantation of progenitor stem cells can be an excellent treatment option in this regard. Preclinical studies demonstrate that untreated stem cells, unlike stem cells activated to differentiate into neuronal lineage, do not survive in the neuronal tissues. Conventional methods of inducing neuronal differentiation of stem cells are complex and expensive. We therefore sought to determine if a simple, one-step, and cost effective method, previously reported to induce neuronal differentiation of embryonic stem cells and induced-pluripotent stem cells, can be applied to adult stem cells. Indeed, dual inhibition of activin/nodal/TGF-βand BMP pathways using SB431542 and dorsomorphin, respectively, induced neuronal differentiation of human adipose derived stem cells (hADSCs) as evidenced by formation of neurite extensions, protein expression of neuron-specific gamma enolase, and mRNA expression of neuron-specific transcription factors Sox1 and Pax6 and matured neuronal marker NF200. This process correlated with enhanced phosphorylation of p38, Erk1/2, PI3K, and Akt1/3. Additionally,in vitrosubcutaneous implants of SB431542 and dorsomorphin treated hADSCs displayed significantly higher expression of active-axonal-growth-specific marker GAP43. Our data offers novel insights into cell-based therapies for the nervous system repair.


2019 ◽  
Author(s):  
Kevin Sugier ◽  
Romuald Laso-Jadart ◽  
Soheib Kerbache ◽  
Jos Kafer ◽  
Majda Arif ◽  
...  

AbstractCopepods are the most numerous animals and play an essential role in the marine trophic web and biogeochemical cycles. The genus Oithona is described as having the highest numerical density, as the most cosmopolite copepod and iteroparous. The Oithona male paradox obliges it to alternate feeding (immobile) and mating (mobile) phases. As the molecular basis of this trade-off is unknown, we investigated this sexual dimorphism at the molecular level by integrating genomic, transcriptomic and protein-protein interaction analyses.While a ZW sex-determination system was predicted in O. nana, a fifteen-year time-series in the Toulon Little Bay showed a biased sex ratio toward females (male / female ratio < 0.15±0.11) highlighting a higher mortality in male. Here, the transcriptomic analysis of the five different developmental stages showed enrichment of Lin12-Notch Repeat (LNR) domains-containing proteins coding genes (LDPGs) in male transcripts. The male also showed enrichment in transcripts involved in proteolysis, nervous system development, synapse assembly and functioning and also amino acid conversion to glutamate. Moreover, several male down-regulated genes were involved in the increase of food uptake and digestion. The formation of LDP complexes was detected by yeast two-hybrid, with interactions involving proteases, extracellular matrix proteins and neurogenesis related proteins.Together, these results suggest that the O. nana male hypermotility is sustained by LDP-modulated proteolysis allowing the releases and conversions of amino acid into the excitatory neurotransmitter glutamate. This process could permit new axons and dendrites formation suggesting a sexual nervous system dimorphism. This could support the hypothesis of a sacrificial behaviour in males at the metabolic level.


2020 ◽  
Vol 39 (1) ◽  
pp. 27-39 ◽  
Author(s):  
Sophie Kendall ◽  
Felix Gradstein ◽  
Christopher Jones ◽  
Oliver T. Lord ◽  
Daniela N. Schmidt

Abstract. Changes in morphology during ontogeny can have profound impacts on the physiology and biology of a species. Studies of ontogenetic disparity through time are rare because of the lack of preservation of developmental stages in the fossil record. As they grow by incremental chamber accretion and retain evidence of growth in their shell, planktic foraminifera are an ideal group for the study ontogenetic disparity through the evolution of a higher taxon. Here, we quantify different developmental stages in Jurassic foraminifers and infer the evolutionary implications of the shape of these earliest representatives of the group. Using a Zeiss Xradia micro-CT scanner, the development of Globuligerina bathoniana and Globuligerina oxfordiana from the Bathonian sediments of Gnaszyn, Poland, and Globuligerina balakhmatovae and Globuligerina tojeiraensis from the Kimmeridgian Tojeira Formation of Portugal was reconstructed. Disparity is low through the early evolution of planktic foraminifers. The number of chambers and range in surface area per unit volume are lower than in modern specimens. We interpret this morphology as an indication of opportunistic behaviour. The low morphological plasticity during the juvenile stage suggests that strong constraints on the juveniles, described in the modern ocean, were already acting on Jurassic specimens. The high surface area per unit volume in these developmental stages points towards the need to satisfy a higher metabolic demand than in the adult specimens. We are interpreting the lower chamber numbers as indicative of short life cycles and potentially rapid reproduction, both of which may have allowed these species to exploit the nutrient-rich waters of the Jurassic Tethys Ocean.


Development ◽  
2002 ◽  
Vol 129 (12) ◽  
pp. 2785-2796 ◽  
Author(s):  
Alan J. Burns ◽  
Jean-Marie M. Delalande ◽  
Nicole M. Le Douarin

The enteric nervous system (ENS) is derived from vagal and sacral neural crest cells (NCC). Within the embryonic avian gut, vagal NCC migrate in a rostrocaudal direction to form the majority of neurons and glia along the entire length of the gastrointestinal tract, whereas sacral NCC migrate in an opposing caudorostral direction, initially forming the nerve of Remak, and contribute a smaller number of ENS cells primarily to the distal hindgut. In this study, we have investigated the ability of vagal NCC, transplanted to the sacral region of the neuraxis, to colonise the chick hindgut and form the ENS in an experimentally generated hypoganglionic hindgut in ovo model. Results showed that when the vagal NC was transplanted into the sacral region of the neuraxis, vagal-derived ENS precursors immediately migrated away from the neural tube along characteristic pathways, with numerous cells colonising the gut mesenchyme by embryonic day (E) 4. By E7, the colorectum was extensively colonised by transplanted vagal NCC and the migration front had advanced caudorostrally to the level of the umbilicus. By E10, the stage at which sacral NCC begin to colonise the hindgut in large numbers, myenteric and submucosal plexuses in the hindgut almost entirely composed of transplanted vagal NCC, while the migration front had progressed into the pre-umbilical intestine, midway between the stomach and umbilicus. Immunohistochemical staining with the pan-neuronal marker, ANNA-1, revealed that the transplanted vagal NCC differentiated into enteric neurons, and whole-mount staining with NADPH-diaphorase showed that myenteric and submucosal ganglia formed interconnecting plexuses, similar to control animals. Furthermore, using an anti-RET antibody, widespread immunostaining was observed throughout the ENS, within a subpopulation of sacral NC-derived ENS precursors, and in the majority of transplanted vagal-to-sacral NCC. Our results demonstrate that: (1) a cell autonomous difference exists between the migration/signalling mechanisms used by sacral and vagal NCC, as transplanted vagal cells migrated along pathways normally followed by sacral cells, but did so in much larger numbers, earlier in development; (2) vagal NCC transplanted into the sacral neuraxis extensively colonised the hindgut, migrated in a caudorostral direction, differentiated into neuronal phenotypes, and formed enteric plexuses; (3) RET immunostaining occurred in vagal crest-derived ENS cells, the nerve of Remak and a subpopulation of sacral NCC within hindgut enteric ganglia.


Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 855-863 ◽  
Author(s):  
C.Q. Doe

The first step in generating cellular diversity in the Drosophila central nervous system is the formation of a segmentally reiterated array of neural precursor cells, called neuroblasts. Subsequently, each neuroblast goes through an invariant cell lineage to generate neurons and/or glia. Using molecular lineage markers, I show that (1) each neuroblast forms at a stereotyped time and position; (2) the neuroblast pattern is indistinguishable between thoracic and abdominal segments; (3) the development of individual neuroblasts can be followed throughout early neurogenesis; (4) gene expression in a neuroblast can be reproducibly modulated during its cell lineage; (5) identified ganglion mother cells form at stereotyped times and positions; and (6) the cell lineage of four well-characterized neurons can be traced back to two identified neuroblasts. These results set the stage for investigating neuroblast specification and the mechanisms controlling neuroblast cell lineages.


2019 ◽  
Vol 116 (40) ◽  
pp. 20201-20209 ◽  
Author(s):  
Rong Huang ◽  
Yuan Wang ◽  
Jie Li ◽  
Xiaohan Jiang ◽  
Yinglin Li ◽  
...  

Action potential-induced vesicular exocytosis is considered exclusively Ca2+ dependent in Katz’s Ca2+ hypothesis on synaptic transmission. This long-standing concept gets an exception following the discovery of Ca2+-independent but voltage-dependent secretion (CiVDS) and its molecular mechanisms in dorsal root ganglion sensory neurons. However, whether CiVDS presents only in sensory cells remains elusive. Here, by combining multiple independent recordings, we report that [1] CiVDS robustly presents in the sympathetic nervous system, including sympathetic superior cervical ganglion neurons and slice adrenal chromaffin cells, [2] uses voltage sensors of Ca2+ channels (N-type and novel L-type), and [3] contributes to catecholamine release in both homeostatic and fight-or-flight like states; [4] CiVDS-mediated catecholamine release is faster than that of Ca2+-dependent secretion at the quantal level and [5] increases Ca2+ currents and contractility of cardiac myocytes. Together, CiVDS presents in the sympathetic nervous system with potential physiological functions, including cardiac muscle contractility.


Sign in / Sign up

Export Citation Format

Share Document