scholarly journals Quantitatively estimating main soil water-soluble salt ions content based on Visible-near infrared wavelength selected using GC, SR and VIP

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6310 ◽  
Author(s):  
Haifeng Wang ◽  
Yinwen Chen ◽  
Zhitao Zhang ◽  
Haorui Chen ◽  
Xianwen Li ◽  
...  

Soil salinization is the primary obstacle to the sustainable development of agriculture and eco-environment in arid regions. The accurate inversion of the major water-soluble salt ions in the soil using visible-near infrared (VIS-NIR) spectroscopy technique can enhance the effectiveness of saline soil management. However, the accuracy of spectral models of soil salt ions turns out to be affected by high dimensionality and noise information of spectral data. This study aims to improve the model accuracy by optimizing the spectral models based on the exploration of the sensitive spectral intervals of different salt ions. To this end, 120 soil samples were collected from Shahaoqu Irrigation Area in Inner Mongolia, China. After determining the raw reflectance spectrum and content of salt ions in the lab, the spectral data were pre-treated by standard normal variable (SNV). Subsequently the sensitive spectral intervals of each ion were selected using methods of gray correlation (GC), stepwise regression (SR) and variable importance in projection (VIP). Finally, the performance of both models of partial least squares regression (PLSR) and support vector regression (SVR) was investigated on the basis of the sensitive spectral intervals. The results indicated that the model accuracy based on the sensitive spectral intervals selected using different analytical methods turned out to be different: VIP was the highest, SR came next and GC was the lowest. The optimal inversion models of different ions were different. In general, both PLSR and SVR had achieved satisfactory model accuracy, but PLSR outperformed SVR in the forecasting effects. Great difference existed among the optimal inversion accuracy of different ions: the predicative accuracy of Ca2+, Na+, Cl−, Mg2+ and SO42− was very high, that of CO32− was high and K+ was relatively lower, but HCO3− failed to have any predicative power. These findings provide a new approach for the optimization of the spectral model of water-soluble salt ions and improvement of its predicative precision.


2018 ◽  
Author(s):  
Haifeng Wang ◽  
Yinwen Chen ◽  
Zhitao Zhang ◽  
Haorui Chen ◽  
Xianwen Li ◽  
...  

Soil salinization is the primary obstacle to the sustainable development of agriculture and eco-environment in arid regions. The accurate inversion of the major water-soluble salt ions in the soil using visible-near infrared (VIS-NIR) spectroscopy technique can enhance the effectiveness of saline soil management. However, the accuracy of spectral models of soil salt ions turns out to be affected by high dimensionality and noise information of spectral data. This study aims to improve the model accuracy by optimizing the spectral models based on the exploration of the sensitive spectral intervals of different salt ions. To this end, 120 soil samples were collected from Shahaoqu Irrigation Area in Inner Mongolia, China. After determining the raw reflectance spectrum and content of salt ions in the lab, the spectral data were pre-treated by standard normal variable (SNV). Subsequently the sensitive spectral intervals of each ion were selected using methods of gray correlation (GC), stepwise regression (SR) and variable importance in projection (VIP). Finally, the performance of both models of partial least squares regression (PLSR) and support vector regression (SVR) was investigated on the basis of the sensitive spectral intervals. The results indicated that the model accuracy based on the sensitive spectral intervals selected using different analytical methods turned out to be different: VIP was the highest, SR came next and GC was the lowest. The optimal inversion models of different ions were different. In general, both PLSR and SVR had achieved satisfactory model accuracy, but PLSR outperformed SVR in the forecasting effects. Great difference existed among the optimal inversion accuracy of different ions: the predicative accuracy of Ca2+, Na+, Cl-, Mg2+ and SO42- was very high, that of CO32- was high and K+ was relatively lower, but HCO3- failed to have any predicative power. These findings provide a new approach for the optimization of the spectral model of water-soluble salt ions and improvement of its predicative precision.



2018 ◽  
Author(s):  
Haifeng Wang ◽  
Yinwen Chen ◽  
Zhitao Zhang ◽  
Haorui Chen ◽  
Xianwen Li ◽  
...  

Soil salinization is the primary obstacle to the sustainable development of agriculture and eco-environment in arid regions. The accurate inversion of the major water-soluble salt ions in the soil using visible-near infrared (VIS-NIR) spectroscopy technique can enhance the effectiveness of saline soil management. However, the accuracy of spectral models of soil salt ions turns out to be affected by high dimensionality and noise information of spectral data. This study aims to improve the model accuracy by optimizing the spectral models based on the exploration of the sensitive spectral intervals of different salt ions. To this end, 120 soil samples were collected from Shahaoqu Irrigation Area in Inner Mongolia, China. After determining the raw reflectance spectrum and content of salt ions in the lab, the spectral data were pre-treated by standard normal variable (SNV). Subsequently the sensitive spectral intervals of each ion were selected using methods of gray correlation (GC), stepwise regression (SR) and variable importance in projection (VIP). Finally, the performance of both models of partial least squares regression (PLSR) and support vector regression (SVR) was investigated on the basis of the sensitive spectral intervals. The results indicated that the model accuracy based on the sensitive spectral intervals selected using different analytical methods turned out to be different: VIP was the highest, SR came next and GC was the lowest. The optimal inversion models of different ions were different. In general, both PLSR and SVR had achieved satisfactory model accuracy, but PLSR outperformed SVR in the forecasting effects. Great difference existed among the optimal inversion accuracy of different ions: the predicative accuracy of Ca2+, Na+, Cl-, Mg2+ and SO42- was very high, that of CO32- was high and K+ was relatively lower, but HCO3- failed to have any predicative power. These findings provide a new approach for the optimization of the spectral model of water-soluble salt ions and improvement of its predicative precision.



2021 ◽  
Author(s):  
Iva Hrelja ◽  
Ivana Šestak ◽  
Igor Bogunović

<p>Spectral data obtained from optical spaceborne sensors are being recognized as a valuable source of data that show promising results in assessing soil properties on medium and macro scale. Combining this technique with laboratory Visible-Near Infrared (VIS-NIR) spectroscopy methods can be an effective approach to perform robust research on plot scale to determine wildfire impact on soil organic matter (SOM) immediately after the fire. Therefore, the objective of this study was to assess the ability of Sentinel-2 superspectral data in estimating post-fire SOM content and comparison with the results acquired with laboratory VIS-NIR spectroscopy.</p><p>The study is performed in Mediterranean Croatia (44° 05’ N; 15° 22’ E; 72 m a.s.l.), on approximately 15 ha of fire affected mixed <em>Quercus ssp.</em> and <em>Juniperus ssp.</em> forest on Cambisols. A total of 80 soil samples (0-5 cm depth) were collected and geolocated on August 22<sup>nd</sup> 2019, two days after a medium to high severity wildfire. The samples were taken to the laboratory where soil organic carbon (SOC) content was determined via dry combustion method with a CHNS analyzer. SOM was subsequently calculated by using a conversion factor of 1.724. Laboratory soil spectral measurements were carried out using a portable spectroradiometer (350-1050 nm) on all collected soil samples. Two Sentinel-2 images were downloaded from ESAs Scientific Open Access Hub according to the closest dates of field sampling, namely August 31<sup>st</sup> and September 5<sup>th </sup>2019, each containing eight VIS-NIR and two SWIR (Short-Wave Infrared) bands which were extracted from bare soil pixels using SNAP software. Partial least squares regression (PLSR) model based on the pre-processed spectral data was used for SOM estimation on both datasets. Spectral reflectance data were used as predictors and SOM content was used as a response variable. The accuracy of the models was determined via Root Mean Squared Error of Prediction (RMSE<sub>p</sub>) and Ratio of Performance to Deviation (RPD) after full cross-validation of the calibration datasets.</p><p>The average post-fire SOM content was 9.63%, ranging from 5.46% minimum to 23.89% maximum. Models obtained from both datasets showed low RMSE<sub>p </sub>(Spectroscopy dataset RMSE<sub>p</sub> = 1.91; Sentinel-2 dataset RMSE<sub>p</sub> = 0.99). RPD values indicated very good predictions for both datasets (Spectrospcopy dataset RPD = 2.72; Sentinel-2 dataset RPD = 2.22). Laboratory spectroscopy method with higher spectral resolution provided more accurate results. Nonetheless, spaceborne method also showed promising results in the analysis and monitoring of SOM in post-burn period.</p><p><strong>Keywords:</strong> remote sensing, soil spectroscopy, wildfires, soil organic matter</p><p><strong>Acknowledgment: </strong>This work was supported by the Croatian Science Foundation through the project "Soil erosion and degradation in Croatia" (UIP-2017-05-7834) (SEDCRO). Aleksandra Perčin is acknowledged for her cooperation during the laboratory work.</p>



2020 ◽  
Vol 12 (4) ◽  
pp. 1476 ◽  
Author(s):  
Lei Han ◽  
Rui Chen ◽  
Huili Zhu ◽  
Yonghua Zhao ◽  
Zhao Liu ◽  
...  

Soil arsenic (AS) contamination has attracted a great deal of attention because of its detrimental effects on environments and humans. AS and inorganic AS compounds have been classified as a class of carcinogens by the World Health Organization. In order to select a high-precision method for predicting the soil AS content using hyperspectral techniques, we collected 90 soil samples from six different land use types to obtain the soil AS content by chemical analysis and hyperspectral data based on an indoor hyperspectral experiment. A partial least squares regression (PLSR), a support vector regression (SVR), and a back propagation neural network (BPNN) were used to establish a relationship between the hyperspectral and the soil AS content to predict the soil AS content. In addition, the feasibility and modeling accuracy of different interval spectral resampling, different spectral pretreatment methods, feature bands, and full-band were compared and discussed to explore the best inversion method for estimating soil AS content by hyperspectral. The results show that 10 nm + second derivative (SD) + BPNN is the optimum method to predict soil AS content estimation; R v 2 is 0.846 and residual predictive deviation (RPD) is 2.536. These results can expand the representativeness and practicability of the model to a certain extent and provide a scientific basis and technical reference for soil pollution monitoring.



Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1017 ◽  
Author(s):  
Walter Díaz ◽  
Carlos Toro ◽  
Eduardo Balladares ◽  
Victor Parra ◽  
Pablo Coelho ◽  
...  

The pyrometallurgical processes for primary copper production have only off-line and time-demanding analytical techniques to characterize the in and out streams of the smelting and converting steps. Since these processes are highly exothermic, relevant process information could potentially be obtained from the visible and near-infrared radiation emitted to the environment. In this work, we apply spectral sensing and multivariate data analysis methodologies to identify and classify copper and iron sulfide minerals present in the blend from spectra measured during their combustion in a laboratory drop-tube setup, in which chemical reactions that take place in flash smelting furnaces can be reproduced. Controlled combustion experiments were conducted with two industrial concentrates and with high-grade mineral species as well, with a focus on pyrite and chalcopyrite. Exploratory analysis by means of Principal Component Analysis (PCA) applied on the spectral data depicted high correlation features among species with similar elemental compositions. Classification algorithms were tested on the spectral data, and a classification accuracy of 95.3% with a support vector machine (SVM) algorithm with a Gaussian kernel was achieved. The results obtained by the described procedures are shown to be very promising as a first step in the development of a predictive and analytical tool in search of fitting the current need for real-time control of pyrometallurgical processes.



Soil Research ◽  
2011 ◽  
Vol 49 (2) ◽  
pp. 166 ◽  
Author(s):  
Yongni Shao ◽  
Yong He

The aim of this study was to investigate the potential of the infrared spectroscopy technique for non-destructive measurement of soil properties. For the study, 280 soil samples were collected from several regions in Zhejiang, China. Data from near infrared (NIR, 800–2500 nm), mid infrared (MIR, 4000–400 cm–1), and the combined NIR–MIR regions were compared to determine which produced the best prediction of soil properties. Least-squares support vector machines (LS-SVM) were applied to construct calibration models for soil properties such as available nitrogen (N), phosphorus (P), and potassium (K). The results showed that both spectral regions contained substantial information on N, P, and K in the soils studied, and the combined NIR–MIR region did a little worse than either the NIR or MIR region. Optimal results were obtained through LS-SVM compared with the standard partial least-squares regression method, and the correlation coefficient of prediction (rp), root mean square error for prediction, and bias were, respectively, 0.90, 16.28 mg/kg, and 0.96 mg/kg for the prediction results of N in the NIR region; and 0.88, 41.62 mg/kg, and –2.28 mg/kg for the prediction results of P, and 0.89, 33.47 mg/kg, and 2.96 mg/kg for the prediction results of K, both in the MIR region. This work demonstrated the potential of LS-SVM coupled to infrared reflectance spectroscopy for more efficient soil analysis and the acquisition of soil information.



2011 ◽  
Vol 128-129 ◽  
pp. 297-300
Author(s):  
Shao Wei Liu ◽  
Dong Yan ◽  
Zhi Hua Liu ◽  
Jian Tang

Spectral data such as near-infrared spectrum and frequency spectrum can simply the modeling of the difficulty-to-measured parameters. A novel modeling approach combined the feature extraction with extreme support vector regression (ESVR) is proposed. The latent variables space based feature extraction method can successfully complete the dimension reduction and independent variable extraction. The novel proposed ESVR leaning algorithm is realized by using extreme learning machine (ELM) kernel as SVR kernel, which is used to construct final models with better generalization. The experimental results based on the orange juice near-infrared spectra demonstrate that the proposed approach has better generalization performance and prediction accuracy.



2021 ◽  
Vol 23 (1) ◽  
pp. 220
Author(s):  
Soo-In Sohn ◽  
Subramani Pandian ◽  
John-Lewis Zinia Zaukuu ◽  
Young-Ju Oh ◽  
Soo-Yun Park ◽  
...  

In recent years, the rapid development of genetically modified (GM) technology has raised concerns about the safety of GM crops and foods for human health and the ecological environment. Gene flow from GM crops to other crops, especially in the Brassicaceae family, might pose a threat to the environment due to their weediness. Hence, finding reliable, quick, and low-cost methods to detect and monitor the presence of GM crops and crop products is important. In this study, we used visible near-infrared (Vis-NIR) spectroscopy for the effective discrimination of GM and non-GM Brassica napus, B. rapa, and F1 hybrids (B. rapa X GM B. napus). Initially, Vis-NIR spectra were collected from the plants, and the spectra were preprocessed. A combination of different preprocessing methods (four methods) and various modeling approaches (eight methods) was used for effective discrimination. Among the different combinations, the Savitzky-Golay and Support Vector Machine combination was found to be an optimal model in the discrimination of GM, non-GM, and hybrid plants with the highest accuracy rate (100%). The use of a Convolutional Neural Network with Normalization resulted in 98.9%. The same higher accuracy was found in the use of Gradient Boosted Trees and Fast Large Margin approaches. Later, phenolic acid concentration among the different plants was assessed using GC-MS analysis. Partial least squares regression analysis of Vis-NIR spectra and biochemical characteristics showed significant correlations in their respective changes. The results showed that handheld Vis-NIR spectroscopy combined with chemometric analyses could be used for the effective discrimination of GM and non-GM B. napus, B. rapa, and F1 hybrids. Biochemical composition analysis can also be combined with the Vis-NIR spectra for efficient discrimination.



2021 ◽  
Vol 13 (23) ◽  
pp. 4825
Author(s):  
Salman Naimi ◽  
Shamsollah Ayoubi ◽  
Mojtaba Zeraatpisheh ◽  
Jose Alexandre Melo Dematte

Soil salinization is a severe danger to agricultural activity in arid and semi-arid areas, reducing crop production and contributing to land destruction. This investigation aimed to utilize machine learning algorithms to predict spatial soil salinity (dS m−1) by combining environmental covariates derived from remotely sensed (RS) data, a digital elevation model (DEM), and proximal sensing (PS). The study is located in an arid region, southern Iran (52°51′–53°02′E; 28°16′–28°29′N), in which we collected 300 surface soil samples and acquired the spectral data with RS (Sentinel-2) and PS (electromagnetic induction instrument (EMI) and portable X-ray fluorescence (pXRF)). Afterward, we analyzed the data using five machine learning methods as follows: random forest—RF, k-nearest neighbors—kNN, support vector machines—SVM, partial least squares regression—PLSR, artificial neural networks—ANN, and the ensemble of individual models. To estimate the electrical conductivity of the saturated paste extract (ECe), we built three scenarios, including Scenario (1): Synthetic Soil Image (SySI) bands and salinity indices derived from it; Scenario (2): RS data, PS data, topographic attributes, and geology and geomorphology maps; and Scenario (3): the combination of Scenarios (1) and (2). The best prediction accuracy was obtained for the RF model in Scenario (3) (R2 = 0.48 and RMSE = 2.49), followed by Scenario (2) (RF model, R2 = 0.47 and RMSE = 2.50) and Scenario (1) for the SVM model (R2 = 0.26 and RMSE = 2.97). According to ensemble modeling, a combined strategy with the five models exceeded the performance of all the single ones and predicted soil salinity in all scenarios. The results revealed that the ensemble modeling method had higher reliability and more accurate predictive soil salinity than the individual approach. Relative improvement (RI%) showed that the R2 index in the ensemble model improved compared to the most precise prediction for the Scenarios (1), (2), and (3) with 120.95%, 56.82%, and 66.71%, respectively. We applied the best model in each scenario for mapping the soil salinity in the selected area, which indicated that ECe tended to increase from the northwestern to south and southeastern regions. The area with high ECe was located in the regions that mainly had low elevations and playa. The areas with low ECe were located in the higher elevations with steeper slopes and alluvial fans, and thus, relief had great importance. This study provides a precise, cost-effective, and scientific base prediction for decision-making purposes to map soil salinity in arid regions.



2020 ◽  
Vol 12 (20) ◽  
pp. 3394
Author(s):  
Lu Xu ◽  
Yongsheng Hong ◽  
Yu Wei ◽  
Long Guo ◽  
Tiezhu Shi ◽  
...  

Visible and near-infrared reflectance (VIS-NIR) spectroscopy is widely applied to estimate soil organic carbon (SOC). Intense and diverse human activities increase the heterogeneity in the relationships between SOC and VIS-NIR spectra in anthropogenic soil. This fact results in poor performance of SOC estimation models. To improve model accuracy and parsimony, we investigated the performance of two variable selection algorithms, namely competitive adaptive reweighted sampling (CARS) and random frog (RF), coupled with five spectral pretreatments. A total of 108 samples were collected from Jianghan Plain, China, with the SOC content and VIS-NIR spectra measured in the laboratory. Results showed that both CARS and RF coupled with partial least squares regression (PLSR) outperformed PLSR alone in terms of higher model accuracy and less spectral variables. It revealed that spectral variable selection could identify important spectral variables that account for the relationships between SOC and VIS-NIR spectra, thereby improving the accuracy and parsimony of PLSR models in anthropogenic soil. Our findings are of significant practical value to the SOC estimation in anthropogenic soil by VIS-NIR spectroscopy.



Sign in / Sign up

Export Citation Format

Share Document